Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(30): 12426-31, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23836671

RESUMO

Approximately 70% of patients with non-small-cell lung cancer present with late-stage disease and have limited treatment options, so there is a pressing need to develop efficacious targeted therapies for these patients. This remains a major challenge as the underlying genetic causes of ~50% of non-small-cell lung cancers remain unknown. Here we demonstrate that a targeted genetic dependency screen is an efficient approach to identify somatic cancer alterations that are functionally important. By using this approach, we have identified three kinases with gain-of-function mutations in lung cancer, namely FGFR4, MAP3K9, and PAK5. Mutations in these kinases are activating toward the ERK pathway, and targeted depletion of the mutated kinases inhibits proliferation, suppresses constitutive activation of downstream signaling pathways, and results in specific killing of the lung cancer cells. Genomic profiling of patients with lung cancer is ushering in an era of personalized medicine; however, lack of actionable mutations presents a significant hurdle. Our study indicates that targeted genetic dependency screens will be an effective strategy to elucidate somatic variants that are essential for lung cancer cell viability.


Assuntos
Neoplasias Pulmonares/genética , MAP Quinase Quinase Quinases/genética , Mutação , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Quinases Ativadas por p21/genética , Proliferação de Células , Sobrevivência Celular , Humanos , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases
2.
STAR Protoc ; 3(4): 101894, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36595894

RESUMO

Apolipoprotein E (ApoE) particles are responsible for packing and transporting lipids throughout aqueous environments. We detail steps to assess in vitro particles forming from artificial membranes using right-angle light scattering and to measure their size using dynamic light scattering. We further describe how to generate in cellulo ApoE particles containing triacylglycerol under fatty-acid-induced stress. We also detail steps to isolate them from cell secretome by immunoprecipitation and analyze their lipid cargo by thin-layer chromatography. For complete details on the use and execution of this protocol, please refer to Lindner et al. (2022).1.


Assuntos
Apolipoproteínas E , Ácidos Graxos , Apolipoproteínas E/química
3.
Cell Rep ; 38(9): 110435, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235798

RESUMO

Apolipoprotein E transports lipids and couples metabolism between astrocytes and neurons. The E4 variant (APOE4) affects these functions and represents a genetic predisposition for Alzheimer's disease, but the molecular mechanisms remain elusive. We show that ApoE produces different types of lipoproteins via distinct lipidation pathways. ApoE forms high-density lipoprotein (HDL)-like, cholesterol-rich particles via the ATP-binding cassette transporter 1 (ABCA1), a mechanism largely unaffected by ApoE polymorphism. Alternatively, ectopic accumulation of fat in astrocytes, a stress-associated condition, redirects ApoE toward the assembly and secretion of triacylglycerol-rich lipoproteins, a process boosted by the APOE4 variant. We demonstrate in vitro that ApoE can detect triacylglycerol in membranes and spontaneously assemble lipoprotein particles (10-20 nm) rich in unsaturated triacylglycerol, and that APOE4 has remarkable properties behaving as a strong triacylglycerol binder. We propose that fatty APOE4 astrocytes have reduced ability to clear toxic fatty acids from the extracellular milieu, because APOE4 reroutes them back to secretion.


Assuntos
Apolipoproteína E4 , Astrócitos , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/metabolismo , Astrócitos/metabolismo , Isoformas de Proteínas/metabolismo , Triglicerídeos/metabolismo
4.
Sci Adv ; 8(36): eabn7412, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36070383

RESUMO

Two rover missions to Mars aim to detect biomolecules as a sign of extinct or extant life with, among other instruments, Raman spectrometers. However, there are many unknowns about the stability of Raman-detectable biomolecules in the martian environment, clouding the interpretation of the results. To quantify Raman-detectable biomolecule stability, we exposed seven biomolecules for 469 days to a simulated martian environment outside the International Space Station. Ultraviolet radiation (UVR) strongly changed the Raman spectra signals, but only minor change was observed when samples were shielded from UVR. These findings provide support for Mars mission operations searching for biosignatures in the subsurface. This experiment demonstrates the detectability of biomolecules by Raman spectroscopy in Mars regolith analogs after space exposure and lays the groundwork for a consolidated space-proven database of spectroscopy biosignatures in targeted environments.

5.
Astrobiology ; 19(2): 145-157, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30742496

RESUMO

BIOMEX (BIOlogy and Mars EXperiment) is an ESA/Roscosmos space exposure experiment housed within the exposure facility EXPOSE-R2 outside the Zvezda module on the International Space Station (ISS). The design of the multiuser facility supports-among others-the BIOMEX investigations into the stability and level of degradation of space-exposed biosignatures such as pigments, secondary metabolites, and cell surfaces in contact with a terrestrial and Mars analog mineral environment. In parallel, analysis on the viability of the investigated organisms has provided relevant data for evaluation of the habitability of Mars, for the limits of life, and for the likelihood of an interplanetary transfer of life (theory of lithopanspermia). In this project, lichens, archaea, bacteria, cyanobacteria, snow/permafrost algae, meristematic black fungi, and bryophytes from alpine and polar habitats were embedded, grown, and cultured on a mixture of martian and lunar regolith analogs or other terrestrial minerals. The organisms and regolith analogs and terrestrial mineral mixtures were then exposed to space and to simulated Mars-like conditions by way of the EXPOSE-R2 facility. In this special issue, we present the first set of data obtained in reference to our investigation into the habitability of Mars and limits of life. This project was initiated and implemented by the BIOMEX group, an international and interdisciplinary consortium of 30 institutes in 12 countries on 3 continents. Preflight tests for sample selection, results from ground-based simulation experiments, and the space experiments themselves are presented and include a complete overview of the scientific processes required for this space experiment and postflight analysis. The presented BIOMEX concept could be scaled up to future exposure experiments on the Moon and will serve as a pretest in low Earth orbit.


Assuntos
Cianobactérias/fisiologia , Exobiologia , Líquens/fisiologia , Marte , Biofilmes , Cianobactérias/efeitos da radiação , Deinococcus/fisiologia , Deinococcus/efeitos da radiação , Meio Ambiente Extraterreno , Líquens/efeitos da radiação , Marchantia/fisiologia , Marchantia/efeitos da radiação , Methanosarcina/fisiologia , Methanosarcina/efeitos da radiação , Minerais , Raios Ultravioleta
6.
Front Microbiol ; 8: 1680, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28966605

RESUMO

Outer space, the final frontier, is a hostile and unforgiving place for any form of life as we know it. The unique environment of space allows for a close simulation of Mars surface conditions that cannot be simulated as accurately on the Earth. For this experiment, we tested the resistance of Deinococcus radiodurans to survive exposure to simulated Mars-like conditions in low-Earth orbit for a prolonged period of time as part of the Biology and Mars experiment (BIOMEX) project. Special focus was placed on the integrity of the carotenoid deinoxanthin, which may serve as a potential biomarker to search for remnants of life on other planets. Survival was investigated by evaluating colony forming units, damage inflicted to the 16S rRNA gene by quantitative PCR, and the integrity and detectability of deinoxanthin by Raman spectroscopy. Exposure to space conditions had a strong detrimental effect on the survival of the strains and the 16S rRNA integrity, yet results show that deinoxanthin survives exposure to conditions as they prevail on Mars. Solar radiation is not only strongly detrimental to the survival and 16S rRNA integrity but also to the Raman signal of deinoxanthin. Samples not exposed to solar radiation showed only minuscule signs of deterioration. To test whether deinoxanthin is able to withstand the tested parameters without the protection of the cell, it was extracted from cell homogenate and exposed to high/low temperatures, vacuum, germicidal UV-C radiation, and simulated solar radiation. Results obtained by Raman investigations showed a strong resistance of deinoxanthin against outer space and Mars conditions, with the only exception of the exposure to simulated solar radiation. Therefore, deinoxanthin proved to be a suitable easily detectable biomarker for the search of Earth-like organic pigment-containing life on other planets.

7.
World J Biol Psychiatry ; 18(6): 483-488, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27734750

RESUMO

OBJECTIVES: Binocular depth inversion illusion (BDII) represents an illusion of visual perception that involves higher-order visual and cognitive processes. Its impairment has been linked to psychotic conditions and identified as a marker for at-risk mental states. The endogenous cannabinoid system (ECS) is involved in various neurophysiological processes. One of its key components, anandamide, is involved in the pathophysiology of schizophrenia. Little is known about its impact on BDII alterations. Therefore, we explored associations between BDII and anandamide levels. METHODS: BDII was conducted and blood and CSF were taken in 28 first-episode antipsychotic-naïve schizophrenia (SZ) patients and 81 healthy controls (HC). Serum and CSF anandamide levels were determined by high-performance liquid chromatography/mass spectrometry. RESULTS: BDII scores were significantly elevated in SZ versus HC, indicating a disruption of illusionary revision of percepts in SZ. Anandamide levels were significantly higher in CSF of SZ compared to HC, while serum anandamide was not. However, we found specific association differences of anandamide levels and BDII scores between schizophrenia patients and controls in serum. CONCLUSIONS: These findings support the hypothesis of an involvement of anandamide in cognitive processes impaired in schizophrenia and are consistent with a protective effect of elevated anandamide levels herein.


Assuntos
Ácidos Araquidônicos/metabolismo , Percepção de Profundidade/fisiologia , Endocanabinoides/metabolismo , Ilusões/fisiologia , Alcamidas Poli-Insaturadas/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Percepção Visual/fisiologia , Adulto , Ácidos Araquidônicos/sangue , Ácidos Araquidônicos/líquido cefalorraquidiano , Endocanabinoides/sangue , Endocanabinoides/líquido cefalorraquidiano , Feminino , Humanos , Masculino , Alcamidas Poli-Insaturadas/sangue , Alcamidas Poli-Insaturadas/líquido cefalorraquidiano , Adulto Jovem
8.
Philos Trans A Math Phys Eng Sci ; 372(2030)2014 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-25368345

RESUMO

Surface sediments at Lakes Fryxell, Vanda and Brownworth in the Antarctic Dry Valleys (ADV) were investigated as analogues for the cold, dry environment on Mars. Sediments were sampled from regions surrounding the lakes and from the ice cover on top of the lakes. The ADV sediments were studied using Raman spectra of individual grains and reflectance spectra of bulk particulate samples and compared with previous analyses of subsurface and lakebottom sediments. Elemental abundances were coordinated with the spectral data in order to assess trends in sediment alteration. The surface sediments in this study were compared with lakebottom sediments (Bishop JL et al. 2003 Int. J. Astrobiol. 2, 273-287 (doi:10.1017/S1473550403001654)) and samples from soil pits (Englert P et al. 2013 In European Planetary Science Congress, abstract no. 96; Englert P et al. 2014 In 45th Lunar and Planetary Science Conf., abstract no. 1707). Feldspar, quartz and pyroxene are common minerals found in all the sediments. Minor abundances of carbonate, chlorite, actinolite and allophane are also found in the surface sediments, and are similar to minerals found in greater abundance in the lakebottom sediments. Surface sediment formation is dominated by physical processes; a few centimetres below the surface chemical alteration sets in, whereas lakebottom sediments experience biomineralization. Characterizing the mineralogical variations in these samples provides insights into the alteration processes occurring in the ADV and supports understanding alteration in the cold and dry environment on Mars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA