Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Evol Biol ; 11: 289, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21975191

RESUMO

BACKGROUND: Apomixis is an intriguing trait in plants that results in maternal clones through seed reproduction. Apomixis is an elusive, but potentially revolutionary, trait for plant breeding and hybrid seed production. Recent studies arguing that apomicts are not evolutionary dead ends have generated further interest in the evolution of asexual flowering plants. RESULTS: In the present study, we investigate karyotypic variation in a single chromosome responsible for transmitting apomixis, the Apospory-Specific Genomic Region carrier chromosome, in relation to species phylogeny in the genera Pennisetum and Cenchrus. A 1 kb region from the 3' end of the ndhF gene and a 900 bp region from trnL-F were sequenced from 12 apomictic and eight sexual species in the genus Pennisetum and allied genus Cenchrus. An 800 bp region from the Apospory-Specific Genomic Region also was sequenced from the 12 apomicts. Molecular cytological analysis was conducted in sixteen Pennisetum and two Cenchrus species. Our results indicate that the Apospory-Specific Genomic Region is shared by all apomictic species while it is absent from all sexual species or cytotypes. Contrary to our previous observations in Pennisetum squamulatum and Cenchrus ciliaris, retrotransposon sequences of the Opie-2-like family were not closely associated with the Apospory-Specific Genomic Region in all apomictic species, suggesting that they may have been accumulated after the Apospory-Specific Genomic Region originated. CONCLUSIONS: Given that phylogenetic analysis merged Cenchrus and newly investigated Pennisetum species into a single clade containing a terminal cluster of Cenchrus apomicts, the presumed monophyletic origin of Cenchrus is supported. The Apospory-Specific Genomic Region likely preceded speciation in Cenchrus and its lateral transfer through hybridization and subsequent chromosome repatterning may have contributed to further speciation in the two genera.


Assuntos
Apomixia/genética , Cromossomos de Plantas/genética , Evolução Molecular , Pennisetum/genética , Sequência de Bases , Teorema de Bayes , Primers do DNA/genética , Transferência Genética Horizontal/genética , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
2.
G3 (Bethesda) ; 9(8): 2581-2596, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31208957

RESUMO

Bermudagrass (Cynodon (L.)) is the most important warm-season grass grown for forage or turf. It shows extensive variation in morphological characteristics and growth attributes, but the genetic basis of this variation is little understood. Detection and tagging of quantitative trait loci (QTL) affecting above-ground morphology with diagnostic DNA markers would provide a foundation for genetic and molecular breeding applications in bermudagrass. Here, we report early findings regarding genetic architecture of foliage (canopy height, HT), stolon (stolon internode length, ILEN and length of the longest stolon LLS), and leaf traits (leaf blade length, LLEN and leaf blade width, LW) in 110 F1 individuals derived from a cross between Cynodon dactylon (T89) and C. transvaalensis (T574). Separate and joint environment analyses were performed on trait data collected across two to five environments (locations, and/or years, or time), finding significant differences (P < 0.001) among the hybrid progeny for all traits. Analysis of marker-trait associations detected 74 QTL and 135 epistatic interactions. Composite interval mapping (CIM) and mixed-model CIM (MCIM) identified 32 main effect QTL (M-QTL) and 13 interacting QTL (int-QTL). Colocalization of QTL for plant morphology partially explained significant correlations among traits. M-QTL qILEN-3-2 (for ILEN; R2 = 11-19%), qLLS-7-1 (for LLS; R2 = 13-27%), qLEN-1-1 (for LLEN; R2 = 10-11%), and qLW-3-2 (for LW; R2 = 10-12%) were 'stable' across multiple environments, representing candidates for fine mapping and applied breeding applications. QTL correspondence between bermudagrass and divergent grass lineages suggests opportunities to accelerate progress by predictive breeding of bermudagrass.


Assuntos
Cynodon/anatomia & histologia , Cynodon/genética , Estudos de Associação Genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Mapeamento Cromossômico , Estudos de Associação Genética/métodos , Ligação Genética , Fenótipo
3.
Genetics ; 173(1): 389-400, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16547108

RESUMO

In gametophytic apomicts of the aposporous type, each cell of the embryo sac is genetically identical to somatic cells of the ovule because they are products of mitosis, not of meiosis. The egg of the aposporous embryo sac follows parthenogenetic development into an embryo; therefore, uniform progeny result even from heterozygous plants, a trait that would be valuable for many crop species. Attempts to introgress apomixis from wild relatives into major crops through traditional breeding have been hindered by low or no recombination within the chromosomal region governing this trait (the apospory-specific genomic region or ASGR). The lack of recombination also has been a major obstacle to positional cloning of key genes. To further delineate and characterize the nonrecombinant ASGR, we have identified eight new ASGR-linked, AFLP-based molecular markers, only one of which showed recombination with the trait for aposporous embryo sac development. Bacterial artificial chromosome (BAC) clones identified with the ASGR-linked AFLPs or previously mapped markers, when mapped by fluorescence in situ hybridization in Pennisetum squamulatum and Cenchrus ciliaris, showed almost complete macrosynteny between the two apomictic grasses throughout the ASGR, although with an inverted order. A BAC identified with the recombinant AFLP marker mapped most proximal to the centromere of the ASGR-carrier chromosome in P. squamulatum but was not located on the ASGR-carrier chromosome in C. ciliaris. Exceptional regions where synteny was disrupted probably are nonessential for expression of the aposporous trait. The ASGR appears to be maintained as a haplotype even though its position in the genome can be variable.


Assuntos
Cenchrus/genética , Mapeamento de Sequências Contíguas , Genoma de Planta/genética , Pennisetum/genética , Cromossomos Artificiais Bacterianos/genética , Cromossomos de Plantas/genética , Marcadores Genéticos , Polimorfismo Genético , Recombinação Genética , Sintenia/genética
4.
PLoS One ; 11(3): e0152411, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27031857

RESUMO

Apomixis, or clonal propagation through seed, is a trait identified within multiple species of the grass family (Poaceae). The genetic locus controlling apomixis in Pennisetum squamulatum (syn Cenchrus squamulatus) and Cenchrus ciliaris (syn Pennisetum ciliare, buffelgrass) is the apospory-specific genomic region (ASGR). Previously, the ASGR was shown to be highly conserved but inverted in marker order between P. squamulatum and C. ciliaris based on fluorescence in situ hybridization (FISH) and varied in both karyotype and position of the ASGR on the ASGR-carrier chromosome among other apomictic Cenchrus/Pennisetum species. Using in silico transcript mapping and verification of physical positions of some of the transcripts via FISH, we discovered that the ASGR-carrier chromosome from P. squamulatum is collinear with chromosome 2 of foxtail millet and sorghum outside of the ASGR. The in silico ordering of the ASGR-carrier chromosome markers, previously unmapped in P. squamulatum, allowed for the identification of a backcross line with structural changes to the P. squamulatum ASGR-carrier chromosome derived from gamma irradiated pollen.


Assuntos
Cromossomos de Plantas , Pennisetum/genética , Sorghum/genética , Apomixia/genética , Cromossomos Artificiais Bacterianos , Mapeamento de Sequências Contíguas , Ligação Genética , Hibridização in Situ Fluorescente , Setaria (Planta)/genética
5.
Genetics ; 163(3): 1069-82, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12663545

RESUMO

Apomixis is a means of asexual reproduction by which plants produce embryos without meiosis and fertilization; thus the embryo is of clonal, maternal origin. We previously reported molecular markers showing no recombination with the trait for aposporous embryo sac development in Pennisetum squamulatum and Cenchrus ciliaris, and the collective single-dose alleles defined an apospory-specific genomic region (ASGR). Fluorescence in situ hybridization (FISH) was used to confirm that the ASGR is a hemizygous genomic region and to determine its chromosomal position with respect to rDNA loci and centromere repeats. We also documented chromosome transmission from P. squamulatum in several backcrosses (BCs) with P. glaucum using genomic in situ hybridization (GISH). One to three complete P. squamulatum chromosomes were detected in BC(6), but only one of the three hybridized with the ASGR-linked markers. In P. squamulatum and in all BCs examined, the apospory-linked markers were located in the distal region of the short arm of a single chromosome. All alien chromosomes behaved as univalents during meiosis and segregated randomly in BC(3) and later BC generations, but presence of the ASGR-carrier chromosome alone was sufficient to confer apospory. FISH results support our hypotheses that hemizygosity, proximity to centromeric sequences, and chromosome structure may all play a role in low recombination in the ASGR.


Assuntos
Cenchrus/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Poaceae/genética , Sementes/fisiologia , Cenchrus/citologia , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Sondas de DNA , Hibridização in Situ Fluorescente , Mitose/genética , Raízes de Plantas/fisiologia , Poaceae/citologia , Recombinação Genética
6.
Pest Manag Sci ; 60(12): 1237-44, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15578605

RESUMO

Greenhouse studies were conducted to evaluate the sensitivity of three commercial cultivars, eight experimental cultivars and common bermudagrass to clethodim, glufosinate and glyphosate. Each herbicide was applied at eight doses. Data were regressed on herbicide dose using a log-logistic curve (R2 = 0.56-0.95 for clethodim, R2 = 0.60-0.94 for glufosinate, and R2 = 0.70-0.96 for glyphosate). The herbicide rate that elicited a 50% plant response (I50) in the bermudagrass cultivars ranged from 0.04 to 0.19 kg ha(-1) clethodim, 0.19 to 1.33 kg ha(-1) glufosinate and 0.34 to 1.14 kg ha(-1) glyphosate. Relative to other cultivars, common bermudagrass was intermediate in its response to clethodim and among the most tolerant cultivars to glufosinate and glyphosate. TifSport was relatively tolerant to clethodim and glufosinate compared with other cultivars, but relatively sensitive to glyphosate. One cultivar, 94-437, was consistently among the most sensitive cultivars to each of the herbicides. While there were differential herbicide tolerances among the tested bermudagrass cultivars, there did not appear to be any naturally occurring herbicide resistance that could be commercially utilized. However, research indicated that breeding efforts should target herbicide resistance that is at least four times the registered use rate. Also, TifSport and Tifway have been identified as suitable representatives of triploid hybrid bermudagrass cultivars to be used to evaluate the success of turfgrass renovation programs.


Assuntos
Aminobutiratos/toxicidade , Cicloexanonas/toxicidade , Cynodon/efeitos dos fármacos , Glicina/análogos & derivados , Glicina/toxicidade , Herbicidas/toxicidade , Cruzamentos Genéticos , Cynodon/genética , Relação Dose-Resposta a Droga , Resistência a Medicamentos , Glifosato
7.
J Hered ; 97(5): 521-4, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16793863

RESUMO

Apomixis is a mode of asexual reproduction where maternal clones are produced through seeds. Consequently, genetic segregation is prevented in hybrid progenies. Pennisetum squamulatum has been used to transfer apomixis into the related sexual species Pennisetum glaucum by the introgression of an apospory-specific genomic region (ASGR)-carrier chromosome. Crosses between P. glaucum and P. squamulatum or Pennisetum purpureum have been relatively easy to make even though P. squamulatum has been reported to have a different basic chromosome number than the other 2 species (9 vs. 7) and to be hexaploid (2n = 6x = 54). Our extensive examination of one accession had shown a chromosome number of 2n = 56. In order to determine if there was a variation among accessions, we counted the number of chromosomes in 5 accessions of P. squamulatum using centromeric and 18S-5.8S-26S rDNA probes as molecular cytological markers. Our results showed that P. squamulatum is most likely octaploid with a basic chromosome number of 7 (2n = 8x = 56) and may belong to the secondary gene pool of Pennisetum. Moreover, a morphologically similar ASGR-carrier chromosome that confers apomixis was observed in all accessions.


Assuntos
Cromossomos de Plantas , Pennisetum/genética , Poliploidia , Cromossomos Artificiais Bacterianos/metabolismo , DNA de Plantas/química , DNA de Plantas/metabolismo , Hibridização in Situ Fluorescente , Pennisetum/classificação , Reprodução Assexuada
8.
Theor Appl Genet ; 111(6): 1042-51, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16133318

RESUMO

An apomictic mode of reproduction known as apospory is displayed by most buffelgrass (Cenchrus ciliaris) genotypes, but rare sexual individuals have been identified. Previously, intraspecific crosses between sexual and aposporous genotypes allowed linkage to be discovered between the aposporous mode of reproduction and nine molecular markers that had been isolated from an aposporous relative, Pennisetum squamulatum. This region was described as the apospory-specific genomic region (ASGR). We now show an ideogram of the chromosome complement for aposporous tetraploid buffelgrass accession B-12-9 including the ASGR-carrier chromosome. The ASGR-carrier chromosome has a region of hemizygosity, as determined by in situ hybridization of BAC clones and unique morphological characteristics when compared with other chromosomes in the genome. In spite of its unique morphology, the ASGR-carrier chromosome could be identified as one of the chromosomes of a meiosis I quadrivalent. A similar partially hemizygous segment was also detected in the ASGR-carrier chromosome of the aposporous buffelgrass genotype, Higgins, but not in the sexual accession B-2S. Two non-recombining BACs linked to apospory were physically mapped on a highly condensed chromatin region of the short arm of B-12-9, and the distance between the BACs was estimated to be approximately 11 Mbp, a distance similar to what previously has been shown in P. squamulatum. The short arm of the ASGR-carrier chromosome was highly condensed at pachytene and extended only 1.7-2.7 fold that of mitotic chromosomes. Low recombination in the ASGR may partially be due to its localization in heterochromatin.


Assuntos
Cenchrus/genética , Cromossomos de Plantas/genética , Heterocromatina/genética , Mapeamento Físico do Cromossomo , Cromossomos Artificiais Bacterianos , Processamento de Imagem Assistida por Computador , Hibridização in Situ Fluorescente , Reprodução/genética
9.
Funct Integr Genomics ; 3(3): 94-104, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12827522

RESUMO

Apomixis is defined as asexual reproduction through seeds, although this outcome can be achieved by multiple pathways. Since little is known about the molecular control of these pathways, how they might intersect is also a mystery. Two of these pathways in the grass family, diplospory and apospory, are receiving attention from molecular biologists. Apospory in Pennisetum/Cenchrus, two genera of panicoid grasses, results in the formation of four-nucleate embryo sacs that lack antipodals. Sexual reproduction frequently aborts so that the resulting seed is composed of (1) a parthenogenetically derived embryo that is genetically identical to the mother and (2) endosperm formed through pseudogamy. The transmission of apomixis is associated with the transfer of a linkage block on a single chromosome. This linkage block contains repetitive sequences as well as hemizygous, low-copy DNA sequences. Fluorescence in situ hybridization has demonstrated that these DNA regions occur on only a single chromosome, but not its homologs, in the polyploid apomicts studied. Features of the apomixis-associated region resemble those of other chromosomal segments isolated from recombination and replete with "selfish" DNAs.


Assuntos
Cenchrus/genética , Genoma de Planta , Pennisetum/genética , Reprodução Assexuada , Sementes , Cenchrus/fisiologia , Hibridização in Situ Fluorescente , Biologia Molecular , Dados de Sequência Molecular , Pennisetum/fisiologia , Sementes/anatomia & histologia
10.
Plant Physiol ; 134(4): 1733-41, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15064383

RESUMO

Gametophytic apomixis is asexual reproduction as a consequence of parthenogenetic development of a chromosomally unreduced egg. The trait leads to the production of embryos with a maternal genotype, i.e. progeny are clones of the maternal plant. The application of the trait in agriculture could be a tremendous tool for crop improvement through conventional and nonconventional breeding methods. Unfortunately, there are no major crops that reproduce by apomixis, and interspecific hybridization with wild relatives has not yet resulted in commercially viable germplasm. Pennisetum squamulatum is an aposporous apomict from which the gene(s) for apomixis has been transferred to sexual pearl millet by backcrossing. Twelve molecular markers that are linked with apomixis coexist in a tight linkage block called the apospory-specific genomic region (ASGR), and several of these markers have been shown to be hemizygous in the polyploid genome of P. squamulatum. High resolution genetic mapping of these markers has not been possible because of low recombination in this region of the genome. We now show the physical arrangement of bacterial artificial chromosomes containing apomixis-linked molecular markers by high resolution fluorescence in situ hybridization on pachytene chromosomes. The size of the ASGR, currently defined as the entire hemizygous region that hybridizes with apomixis-linked bacterial artificial chromosomes, was estimated on pachytene and mitotic chromosomes to be approximately 50 Mbp (a quarter of the chromosome). The ASGR includes highly repetitive sequences from an Opie-2-like retrotransposon family that are particularly abundant in this region of the genome.


Assuntos
Cromossomos/genética , Marcadores Genéticos/genética , Genoma de Planta , Pennisetum/genética , Mapeamento Físico do Cromossomo/métodos , Sequência de Aminoácidos , Cromossomos/fisiologia , Cromossomos Artificiais Bacterianos/genética , Elementos de DNA Transponíveis/genética , DNA de Plantas/química , DNA de Plantas/genética , Marcadores Genéticos/fisiologia , Hibridização in Situ Fluorescente/métodos , Dados de Sequência Molecular , Pennisetum/crescimento & desenvolvimento , Sequências Repetitivas de Ácido Nucleico/genética , Reprodução/genética , Reprodução/fisiologia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA