Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
PLoS Genet ; 19(9): e1010974, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37773959

RESUMO

Adenylosuccinate lyase deficiency is an ultrarare congenital metabolic disorder associated with muscle weakness and neurobehavioral dysfunction. Adenylosuccinate lyase is required for de novo purine biosynthesis, acting twice in the pathway at non-sequential steps. Genetic models can contribute to our understanding of the etiology of disease phenotypes and pave the way for development of therapeutic treatments. Here, we establish the first model to specifically study neurobehavioral aspects of adenylosuccinate lyase deficiency. We show that reduction of adsl-1 function in C. elegans is associated with a novel learning phenotype in a gustatory plasticity assay. The animals maintain capacity for gustatory plasticity, evidenced by a change in their behavior in response to cue pairing. However, their behavioral output is distinct from that of control animals. We link substrate accumulation that occurs upon adsl-1 deficiency to an unexpected perturbation in tyrosine metabolism and show that a lack of tyramine mediates the behavioral changes through action on the metabotropic TYRA-2 tyramine receptor. Our studies reveal a potential for wider metabolic perturbations, beyond biosynthesis of purines, to impact behavior under conditions of adenylosuccinate lyase deficiency.


Assuntos
Adenilossuccinato Liase , Adenilossuccinato Liase/deficiência , Transtorno Autístico , Proteínas de Caenorhabditis elegans , Erros Inatos do Metabolismo da Purina-Pirimidina , Receptores de Amina Biogênica , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Proteínas de Caenorhabditis elegans/genética
2.
PLoS Pathog ; 18(7): e1010699, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35797340

RESUMO

[This corrects the article DOI: 10.1371/journal.ppat.1009350.].

3.
PLoS Pathog ; 17(4): e1009350, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33878133

RESUMO

Intestinal epithelial cells are subject to attack by a diverse array of microbes, including intracellular as well as extracellular pathogens. While defense in epithelial cells can be triggered by pattern recognition receptor-mediated detection of microbe-associated molecular patterns, there is much to be learned about how they sense infection via perturbations of host physiology, which often occur during infection. A recently described host defense response in the nematode C. elegans called the Intracellular Pathogen Response (IPR) can be triggered by infection with diverse natural intracellular pathogens, as well as by perturbations to protein homeostasis. From a forward genetic screen, we identified the C. elegans ortholog of purine nucleoside phosphorylase pnp-1 as a negative regulator of IPR gene expression, as well as a negative regulator of genes induced by extracellular pathogens. Accordingly, pnp-1 mutants have resistance to both intracellular and extracellular pathogens. Metabolomics analysis indicates that C. elegans pnp-1 likely has enzymatic activity similar to its human ortholog, serving to convert purine nucleosides into free bases. Classic genetic studies have shown how mutations in human purine nucleoside phosphorylase cause immunodeficiency due to T-cell dysfunction. Here we show that C. elegans pnp-1 acts in intestinal epithelial cells to regulate defense. Altogether, these results indicate that perturbations in purine metabolism are likely monitored as a cue to promote defense against epithelial infection in the nematode C. elegans.


Assuntos
Células Epiteliais/metabolismo , Nucleosídeos de Purina/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Receptores de Reconhecimento de Padrão/metabolismo , Animais , Infecções Bacterianas/prevenção & controle , Caenorhabditis elegans/metabolismo , Contagem de Células/métodos , Purina-Núcleosídeo Fosforilase/deficiência
4.
Mol Genet Metab ; 140(3): 107686, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37607437

RESUMO

Inborn errors of purine metabolism are rare syndromes with an array of complex phenotypes in humans. One such disorder, adenylosuccinate lyase deficiency (ASLD), is caused by a decrease in the activity of the bi-functional purine biosynthetic enzyme adenylosuccinate lyase (ADSL). Mutations in human ADSL cause epilepsy, muscle ataxia, and autistic-like symptoms. Although the genetic basis of ASLD is known, the molecular mechanisms driving phenotypic outcome are not. Here, we characterize neuromuscular and reproductive phenotypes associated with a deficiency of adsl-1 in Caenorhabditis elegans. We demonstrate that adsl-1 function contributes to regulation of spontaneous locomotion, that adsl-1 functions acutely for proper mobility, and that aspects of adsl-1-related dysfunction are reversible. Using pharmacological supplementation, we correlate phenotypes with distinct metabolic perturbations. The neuromuscular defect correlates with accumulation of a purine biosynthetic intermediate whereas reproductive deficiencies can be ameliorated by purine supplementation, indicating differing molecular mechanisms behind the phenotypes. Because purine metabolism is highly conserved in metazoans, we suggest that similar separable metabolic perturbations result in the varied symptoms in the human disorder and that a dual-approach therapeutic strategy may be beneficial.


Assuntos
Adenilossuccinato Liase , Transtorno Autístico , Erros Inatos do Metabolismo da Purina-Pirimidina , Animais , Humanos , Transtorno Autístico/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Fenótipo , Purinas
5.
Adv Exp Med Biol ; 1236: 225-244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32304075

RESUMO

Genetic model systems allow researchers to probe and decipher aspects of human disease, and animal models of disease are frequently specifically engineered and have been identified serendipitously as well. Animal models are useful for probing the etiology and pathophysiology of disease and are critical for effective discovery and development of novel therapeutics for rare diseases. Here we review the impact of animal model organism research in three examples of congenital metabolic disorders to highlight distinct advantages of model system research. First, we discuss phenylketonuria research where a wide variety of research fields and models came together to make impressive progress and where a nearly ideal mouse model has been central to therapeutic advancements. Second, we review advancements in Lesch-Nyhan syndrome research to illustrate the role of models that do not perfectly recapitulate human disease as well as the need for multiple models of the same disease to fully investigate human disease aspects. Finally, we highlight research on the GM2 gangliosidoses Tay-Sachs and Sandhoff disease to illustrate the important role of both engineered traditional laboratory animal models and serendipitously identified atypical models in congenital metabolic disorder research. We close with perspectives for the future for animal model research in congenital metabolic disorders.


Assuntos
Modelos Animais de Doenças , Erros Inatos do Metabolismo , Animais , Gangliosidoses GM2 , Humanos , Doenças Raras/congênito , Doença de Sandhoff , Doença de Tay-Sachs
6.
J Biol Chem ; 292(27): 11147-11153, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28559281

RESUMO

NAD+ biosynthesis is an attractive and promising therapeutic target for influencing health span and obesity-related phenotypes as well as tumor growth. Full and effective use of this target for therapeutic benefit requires a complete understanding of NAD+ biosynthetic pathways. Here, we report a previously unrecognized role for a conserved phosphoribosyltransferase in NAD+ biosynthesis. Because a required quinolinic acid phosphoribosyltransferase (QPRTase) is not encoded in its genome, Caenorhabditis elegans are reported to lack a de novo NAD+ biosynthetic pathway. However, all the genes of the kynurenine pathway required for quinolinic acid (QA) production from tryptophan are present. Thus, we investigated the presence of de novo NAD+ biosynthesis in this organism. By combining isotope-tracing and genetic experiments, we have demonstrated the presence of an intact de novo biosynthesis pathway for NAD+ from tryptophan via QA, highlighting the functional conservation of this important biosynthetic activity. Supplementation with kynurenine pathway intermediates also boosted NAD+ levels and partially reversed NAD+-dependent phenotypes caused by mutation of pnc-1, which encodes a nicotinamidase required for NAD+ salvage biosynthesis, demonstrating contribution of de novo synthesis to NAD+ homeostasis. By investigating candidate phosphoribosyltransferase genes in the genome, we determined that the conserved uridine monophosphate phosphoribosyltransferase (UMPS), which acts in pyrimidine biosynthesis, is required for NAD+ biosynthesis in place of the missing QPRTase. We suggest that similar underground metabolic activity of UMPS may function in other organisms. This mechanism for NAD+ biosynthesis creates novel possibilities for manipulating NAD+ biosynthetic pathways, which is key for the future of therapeutics.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Complexos Multienzimáticos , NAD , Orotato Fosforribosiltransferase , Orotidina-5'-Fosfato Descarboxilase , Ácido Quinolínico/metabolismo , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutação , NAD/biossíntese , NAD/genética , Orotato Fosforribosiltransferase/genética , Orotato Fosforribosiltransferase/metabolismo , Orotidina-5'-Fosfato Descarboxilase/genética , Orotidina-5'-Fosfato Descarboxilase/metabolismo , Triptofano/genética , Triptofano/metabolismo
7.
J Biol Chem ; 290(43): 26163-79, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26350462

RESUMO

Temporal developmental progression is highly coordinated in Caenorhabditis elegans. However, loss of nicotinamidase PNC-1 activity slows reproductive development, uncoupling it from its typical progression relative to the soma. Using LC/MS we demonstrate that pnc-1 mutants do not salvage the nicotinamide released by NAD(+) consumers to resynthesize NAD(+), resulting in a reduction in global NAD(+) bioavailability. We manipulate NAD(+) levels to demonstrate that a minor deficit in NAD(+) availability is incompatible with a normal pace of gonad development. The NAD(+) deficit compromises NAD(+) consumer activity, but we surprisingly found no functional link between consumer activity and reproductive development. As a result we turned to a comparative metabolomics approach to identify the cause of the developmental phenotype. We reveal widespread metabolic perturbations, and using complementary pharmacological and genetic approaches, we demonstrate that a glycolytic block accounts for the slow pace of reproductive development. Interestingly, mitochondria are protected from both the deficiency in NAD(+) biosynthesis and the effects of reduced glycolytic output. We suggest that compensatory metabolic processes that maintain mitochondrial activity in the absence of efficient glycolysis are incompatible with the requirements for reproductive development, which requires high levels of cell division. In addition to demonstrating metabolic requirements for reproductive development, this work also has implications for understanding the mechanisms behind therapeutic interventions that target NAD(+) salvage biosynthesis for the purposes of inhibiting tumor growth.


Assuntos
Caenorhabditis elegans/fisiologia , Metabolômica , NAD/biossíntese , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Glicólise , Reprodução
8.
Small ; 12(37): 5120-5125, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27515787

RESUMO

A polydimethylsiloxane microchannel featuring sidewall sharp-edge structures and bare channels, and a piezoelement transducer is attached to a thin glass slide. When an external acoustic field is applied to the microchannel, the oscillation of the sharp-edge structures and the thin glass slide generate acoustic streaming flows which in turn rotate single cells and C. elegans in-plane and out-of-plane.


Assuntos
Acústica/instrumentação , Caenorhabditis elegans/citologia , Rotação , Animais , Células HeLa , Humanos , Neurônios/citologia
9.
Dev Dyn ; 243(8): 965-76, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24753121

RESUMO

BACKGROUND: Disruption of cellular metabolite levels can adversely impact development. Specifically, loss-of-function of the C. elegans NAD(+) salvage biosynthesis gene PNC-1 results in an array of developmental phenotypes. Intriguingly, PNC-1 and its functional equivalent in vertebrates are secreted, but the contributions of the extracellular enzymes are poorly understood. We sought to study the tissue-specific requirements for PNC-1 expression and to examine the role of the secreted isoform. RESULTS: A thorough analysis of PNC-1 expression did not detect expression in tissues that require PNC-1 function. Limited expression of both the secreted and intracellular PNC-1 isoforms provided function at a distance from the tissues with phenotypes. We also find that the secreted isoform contributes to in vivo PNC-1 activity. Furthermore, uv1 cell survival has the most stringent requirements in terms of PNC-1 expression pattern or level. CONCLUSIONS: Using careful promoter analysis and a restricted expression approach, we have shown that both the secreted and the intracellular PNC-1 isoforms function cell non-autonomously, and that the PNC-1a isoform is functionally relevant in vivo. Our work suggests a model where PNC-1 function is provided cell non-autonomously by a mix of intra and extracellular activity, most likely requiring NAD(+) salvage metabolite transport between tissues.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/metabolismo , Isoformas de Proteínas/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/genética
10.
Dev Biol ; 376(1): 13-22, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23370148

RESUMO

Centralspindlin, a complex composed of the subunits ZEN-4 and CYK-4, recruits and regulates proteins that modulate the actin cytoskeleton to promote cleavage furrow formation and progression during cytokinesis. The ZEN-4 subunit is a kinesin that is proposed to function primarily by bundling microtubules and promoting transport of the complex to the midzone. ZEN-4 and CYK-4 are mutually dependent for localization to the midzone during cytokinesis. Once at the midzone, the CYK-4 subunit functions to recruit actin regulators and the scaffold anillin as well as to regulate RhoA and Rac via its intrinsic GAP domain, ultimately promoting actomyosin contractile ring assembly. We have revealed a distinct mechanism for centralspindlin localization and function at a stable, postmitotic intercellular bridge in the Caenorhabditis elegans gonad. Loss of zen-4 or cyk-4 function disrupts germ cell progression postmitotically. In contrast to the localization and recruitment relationships during mitosis, centralspindlin is maintained at the intercellular bridge by anillin, and CYK-4 is localized independently of ZEN-4 but not vice versa. We present evidence that centralspindlin function at the rachis bridge involves ZEN-4 action on the microtubules as opposed to the regulation of the actin cytoskeleton mediated by CYK-4 during cytokinesis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Citocinese/fisiologia , Gametogênese/fisiologia , Células Germinativas/metabolismo , Células Gigantes/metabolismo , Cinesinas/metabolismo , Complexos Multiproteicos/metabolismo , Actinas/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Primers do DNA/genética , Proteínas dos Microfilamentos/metabolismo , Microscopia de Fluorescência , Microtúbulos/metabolismo , Interferência de RNA
11.
Dev Biol ; 349(2): 387-94, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21092737

RESUMO

Salvage biosynthesis of nicotinamide adenine dinucleotide (NAD(+)) from nicotinamide (NAM) lowers NAM levels and replenishes the critical molecule NAD(+) after it is hydrolyzed. This pathway is emerging as a regulator of multiple biological processes. Here we probe the contribution of the NAM-NAD(+) salvage pathway to muscle development and function using Caenorhabditis elegans. C. elegans males with mutations in the nicotinamidase pnc-1, which catalyzes the first step of this NAD(+) salvage pathway, cannot mate due to a spicule muscle defect. Multiple muscle types are impaired in the hermaphrodites, including body wall muscles, pharyngeal muscles and vulval muscles. An active NAD(+) salvage pathway is required for optimal function of each muscle cell type. However, we found surprising muscle-cell-type specificity in terms of both the timing and relative sensitivity to perturbation of NAD(+) production or NAM levels. Active NAD(+) biosynthesis during development is critical for function of the male spicule protractor muscles during adulthood, but these muscles can surprisingly do without salvage biosynthesis in adulthood under the conditions examined. The body wall muscles require ongoing NAD(+) salvage biosynthesis both during development and adulthood for maximum function. The vulval muscles do not function in the presence of elevated NAM concentrations, but NAM supplementation is only slightly deleterious to body wall muscles during development or upon acute application in adults. Thus, the pathway plays distinct roles in different tissues. As NAM-NAD(+) biosynthesis also impacts muscle differentiation in vertebrates, we propose that similar complexities may be found among vertebrate muscle cell types.


Assuntos
Vias Biossintéticas/fisiologia , Caenorhabditis elegans/crescimento & desenvolvimento , Desenvolvimento Muscular/fisiologia , NAD/biossíntese , Niacinamida/metabolismo , Animais , Vias Biossintéticas/genética , Cruzamentos Genéticos , Genitália Masculina/anatomia & histologia , Genitália Masculina/fisiologia , Masculino , Mutação/genética , Nicotinamidase/genética , Comportamento Sexual Animal/fisiologia
12.
Development ; 136(21): 3637-46, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19820182

RESUMO

Nicotinamide adenine dinucleotide (NAD(+)) is a central molecule in cellular metabolism and an obligate co-substrate for NAD(+)-consuming enzymes, which regulate key biological processes such as longevity and stress responses. Although NAD(+) biosynthesis has been intensely studied, little analysis has been done in developmental models. We have uncovered novel developmental roles for a nicotinamidase (PNC), the first enzyme in the NAD(+) salvage pathway of invertebrates. Mutations in the Caenorhabditis elegans nicotinamidase PNC-1 cause developmental and functional defects in the reproductive system; the development of the gonad is delayed, four uterine cells die by necrosis and the mutant animals are egg-laying defective. The temporal delay in gonad development results from depletion of the salvage pathway product NAD(+), whereas the uv1 cell necrosis and egg-laying defects result from accumulation of the substrate nicotinamide. Thus, regulation of both substrate and product level is key to the biological activity of PNC-1. We also find that diet probably affects the levels of these metabolites, as it affects phenotypes. Finally, we identified a secreted isoform of PNC-1 and confirmed its extracellular localization and functional activity in vivo. We demonstrate that nicotinamide phosphoribosyltransferase (Nampt), the equivalent enzyme in nicotinamide recycling to NAD(+) in vertebrates, can functionally substitute for PNC-1. As Nampt is also secreted, we postulate an evolutionarily conserved extracellular role for NAD(+) biosynthetic enzymes during development and physiology.


Assuntos
Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , NAD/biossíntese , Niacinamida/metabolismo , Nicotinamidase/metabolismo , Animais , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sobrevivência Celular , Feminino , Nicotinamidase/genética , Óvulo/crescimento & desenvolvimento , Útero/citologia , Útero/fisiologia
13.
G3 (Bethesda) ; 12(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35143646

RESUMO

Necrosis was once described as a chaotic unregulated response to cellular insult. We now know that necrosis is controlled by multiple pathways in response to many different cellular conditions. In our pnc-1 NAD+ salvage deficient Caenorhabditis elegans model excess nicotinamide induces excitotoxic death in uterine-vulval uv1 cells and OLQ mechanosensory neurons. We sought to characterize necrosis in our pnc-1 model in the context of well-characterized necrosis, apoptosis, and autophagy pathways in C. elegans. We confirmed that calpain and aspartic proteases were required for uv1 necrosis, but changes in intracellular calcium levels and autophagy were not, suggesting that uv1 necrosis occurs by a pathway that diverges from mec-4d-induced touch cell necrosis downstream of effector aspartic proteases. OLQ necrosis does not require changes in intracellular calcium, the function of calpain or aspartic proteases, or autophagy. Instead, OLQ survival requires the function of calreticulin and calnexin, pro-apoptotic ced-4 (Apaf1), and genes involved in both autophagy and axon guidance. In addition, the partially OLQ-dependent gentle nose touch response decreased significantly in pnc-1 animals on poor quality food, further suggesting that uv1 and OLQ necrosis differ downstream of their common trigger. Together these results show that, although phenotypically very similar, uv1, OLQ, and touch cell necrosis are very different at the molecular level.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , NAD/metabolismo , Necrose/metabolismo , Neurônios/metabolismo
14.
Dev Dyn ; 239(5): 1352-64, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20108325

RESUMO

The invariant cell division patterns that characterize Caenorhabditis elegans development make it an ideal system to study the mechanisms that control nuclear movement and positioning. Forward genetic screens in this system allowed identification of the key molecular machinery for connecting the nucleus to the cytoskeleton; pairs of protein partners, consisting of a KASH domain protein and a SUN domain protein, bridge the nuclear envelope to connect the nucleus to cytoskeletal components. The C. elegans genome encodes several KASH/SUN pairs, and mutant phenotypes as well as tissue-specific expression patterns suggest a diversity of functions. These functions include moving the nucleus but have been extended to effects on the chromosomes inside the nucleus as well. We review the impact of the C. elegans system in pioneering this field as well as the functions of these KASH/SUN protein pairs across spatial and temporal C. elegans development.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Proteínas de Ciclo Celular/fisiologia , Núcleo Celular/fisiologia , Proteínas Nucleares/fisiologia , Animais , Caenorhabditis elegans , Crescimento e Desenvolvimento
15.
MicroPubl Biol ; 20212021.
Artigo em Inglês | MEDLINE | ID: mdl-34723146

RESUMO

Nicotinamide recycling is critical to the development and function of Caenorhabditis elegans. Excess nicotinamide in a pnc-1 nicotinamidase mutant causes the necrosis of uv1 and OLQ cells and a highly penetrant egg laying defect. An EGF receptor (let-23) gain-of-function mutation suppresses the Egl phenotype in pnc-1 animals. However, gain-of-function mutations in either of the known downstream mediators, let-60/ Ras or itr-1, are not sufficient. Phosphatidylcholine synthesis is neither required nor sufficient, in contrast to its role in the let-23gf rescue of uv1 necrosis. The mechanism behind the let-23gf suppression of the pnc-1 Egl phenotype is unknown.

16.
Biochemistry ; 49(49): 10421-39, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-20979384

RESUMO

Nicotinamidases are metabolic enzymes that hydrolyze nicotinamide to nicotinic acid. These enzymes are widely distributed across biology, with examples found encoded in the genomes of Mycobacteria, Archaea, Eubacteria, Protozoa, yeast, and invertebrates, but there are none found in mammals. Although recent structural work has improved our understanding of these enzymes, their catalytic mechanism is still not well understood. Recent data show that nicotinamidases are required for the growth and virulence of several pathogenic microbes. The enzymes of Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans regulate life span in their respective organisms, consistent with proposed roles in the regulation of NAD(+) metabolism and organismal aging. In this work, the steady state kinetic parameters of nicotinamidase enzymes from C. elegans, Sa. cerevisiae, Streptococcus pneumoniae (a pathogen responsible for human pneumonia), Borrelia burgdorferi (the pathogen that causes Lyme disease), and Plasmodium falciparum (responsible for most human malaria) are reported. Nicotinamidases are generally efficient catalysts with steady state k(cat) values typically exceeding 1 s(-1). The K(m) values for nicotinamide are low and in the range of 2 -110 µM. Nicotinaldehyde was determined to be a potent competitive inhibitor of these enzymes, binding in the low micromolar to low nanomolar range for all nicotinamidases tested. A variety of nicotinaldehyde derivatives were synthesized and evaluated as inhibitors in kinetic assays. Inhibitions are consistent with reaction of the universally conserved catalytic Cys on each enzyme with the aldehyde carbonyl carbon to form a thiohemiacetal complex that is stabilized by a conserved oxyanion hole. The S. pneumoniae nicotinamidase can catalyze exchange of (18)O into the carboxy oxygens of nicotinic acid with H(2)(18)O. The collected data, along with kinetic analysis of several mutants, allowed us to propose a catalytic mechanism that explains nicotinamidase and nicotinic acid (18)O exchange chemistry for the S. pneumoniae enzyme involving key catalytic residues, a catalytic transition metal ion, and the intermediacy of a thioester intermediate.


Assuntos
Aldeídos/farmacocinética , Nicotinamidase/antagonistas & inibidores , Nicotinamidase/farmacocinética , Aldeídos/química , Sequência de Aminoácidos , Animais , Borrelia burgdorferi/enzimologia , Caenorhabditis elegans/enzimologia , Catálise/efeitos dos fármacos , Drosophila melanogaster/enzimologia , Humanos , Dados de Sequência Molecular , Nicotinamidase/classificação , Plasmodium falciparum/enzimologia , Saccharomyces cerevisiae/enzimologia
17.
Dev Biol ; 328(2): 297-304, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19389356

RESUMO

Tubulogenesis and lumen formation are critical to the development of most organs. We study Caenorhabditis elegans vulval and uterine development to probe the complex mechanisms that mediate these events. Development of the vulva and the ventral uterus is coordinated by the inductive cell-signaling activity of a gonadal cell called the anchor cell (AC). We demonstrate that in addition to its function in specifying fate, the AC directly promotes dorsal vulval tubulogenesis. Two types of mutants with defective anchor cell behavior reveal that anchor cell invasion of the vulva is important for forming the toroidal shape of the dorsal vulval cell, vulF. In fos-1 mutants, where the AC cannot breakdown the basement membranes between the gonad and the vulva, and in mutants in unc-6 netrin or its receptor unc-40, which cause AC migration defects, the AC fails to invade the vulva and no lumen is formed in vulF. By examining GFP markers of dorsal vulval cell fate, we demonstrate that fate specification defects do not account for the aberrant vulF shape. We propose that the presence of the AC in the center of the developing vulF toroid is required for dorsal vulval lumen formation to complete vulval tubulogenesis.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Útero/crescimento & desenvolvimento , Animais , Padronização Corporal/fisiologia , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/fisiologia , Movimento Celular/fisiologia , Feminino , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Netrinas , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/fisiologia , Transdução de Sinais/fisiologia , Útero/fisiologia , Vulva/crescimento & desenvolvimento , Vulva/fisiologia
18.
Sci Rep ; 9(1): 19709, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873103

RESUMO

Nicotinamide (NAM) alters behavior in C. elegans and Drosophila, serving as an agonist of TRPV channels affecting sensory neurons and mimicking the mode of action of insecticides used to control phloem-feeding insects. The impact of NAM on green peach aphid (Myzus persicae) behaviors was assessed in artificial diet assays and foliar applications to Arabidopsis plants. Aphids feeding on artificial diets supplemented with NAM impaired stylet movement causing feeding interruptions and ultimately starvation and death. Aphid feeding behaviors were negatively impacted on NAM sprayed plants at concentrations as low as 2.5 mM leading to increased mortality. In choice assays with NAM sprayed leaves aphids showed clear preference for untreated control leaves. NAM is an intermediate in the NAD salvage pathway that should accumulate in nicotinamidase (nic) mutants. LC-MS analysis showed NAM accumulates 60-fold in nic-1-1 Arabidopsis mutants as compared with Col-0. Aphid reproductive potential was significantly decreased on nic-1-1 mutant plants, resulting in a smaller colony size and arrested population development. The results support the hypothesis that dietary NAM causes behavioral changes in aphids, including altered feeding, reduced reproduction, and increased mortality. NAM is thought to bind to TRPV channels causing overstimulation of sensory neurons in the aphid feeding apparatus.


Assuntos
Afídeos/fisiologia , Fertilidade/efeitos dos fármacos , Niacinamida/farmacologia , Animais , Afídeos/efeitos dos fármacos , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Comportamento de Escolha/efeitos dos fármacos , Dieta , Comportamento Alimentar/efeitos dos fármacos , Interações Hospedeiro-Parasita/efeitos dos fármacos , Mutação/genética , Análise de Sobrevida
19.
BMC Dev Biol ; 8: 96, 2008 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-18831765

RESUMO

BACKGROUND: P-type ATPases in subfamily IV are exclusively eukaryotic transmembrane proteins that have been proposed to directly translocate the aminophospholipids phosphatidylserine and phosphatidylethanolamine from the exofacial to the cytofacial monolayer of the plasma membrane. Eukaryotic genomes contain many genes encoding members of this subfamily. At present it is unclear why there are so many genes of this kind per organism or what individual roles these genes perform in organism development. RESULTS: We have systematically investigated expression and developmental function of the six, tat-1 through 6, subfamily IV P-type ATPase genes encoded in the Caenorhabditis elegans genome. tat-5 is the only ubiquitously-expressed essential gene in the group. tat-6 is a poorly-transcribed recent duplicate of tat-5. tat-2 through 4 exhibit tissue-specific developmentally-regulated expression patterns. Strong expression of both tat-2 and tat-4 occurs in the intestine and certain other cells of the alimentary system. The two are also expressed in the uterus, during spermatogenesis and in the fully-formed spermatheca. tat-2 alone is expressed in the pharyngeal gland cells, the excretory system and a few cells of the developing vulva. The expression pattern of tat-3 is almost completely different from those of tat-2 and tat-4. tat-3 expression is detectable in the steroidogenic tissues: the hypodermis and the XXX cells, as well as in most cells of the pharynx (except gland), various tissues of the reproductive system (except uterus and spermatheca) and seam cells. Deletion of tat-1 through 4 individually interferes little or not at all with the regular progression of organism growth and development under normal conditions. However, tat-2 through 4 become essential for reproductive growth during sterol starvation. CONCLUSION: tat-5 likely encodes a housekeeping protein that performs the proposed aminophospholipid translocase function routinely. Although individually dispensable, tat-1 through 4 seem to be at most only partly redundant. Expression patterns and the sterol deprivation hypersensitivity deletion phenotype of tat-2 through 4 suggest that these genes carry out subtle metabolic functions, such as fine-tuning sterol metabolism in digestive or steroidogenic tissues. These findings uncover an unexpectedly high degree of specialization and a widespread involvement in sterol metabolism among the genes encoding the putative aminophospholipid translocases.


Assuntos
Caenorhabditis elegans/genética , Evolução Molecular , Redes e Vias Metabólicas/genética , Proteínas de Transferência de Fosfolipídeos/genética , Esteróis/metabolismo , Adenosina Trifosfatases/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Embrião não Mamífero , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Família Multigênica , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/fisiologia , Filogenia , Especificidade por Substrato/genética , Distribuição Tecidual
20.
Genetics ; 177(2): 1221-6, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17720937

RESUMO

The previously reported negative regulatory activity of HIM-8 on the Sox protein EGL-13 is shared by the HIM-8-related ZIM proteins. Furthermore, mutation of HIM-8 can modulate the effects of substitution mutations in the DNA-binding domains of at least four other transcription factors, suggesting broad regulatory activity by HIM-8.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Fatores de Transcrição/fisiologia , Substituição de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Genes de Helmintos , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA