Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Environ Microbiol ; 23(5): 2404-2419, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33587811

RESUMO

Oceanographic studies have shown that heterotrophic bacteria can protect marine cyanobacteria against oxidative stress caused by hydrogen peroxide (H2 O2 ). Could a similar interspecific protection play a role in freshwater ecosystems? In a series of laboratory experiments and two lake treatments, we demonstrate that freshwater cyanobacteria are sensitive to H2 O2 but can be protected by less-sensitive species such as green algae. Our laboratory results show that green algae degrade H2 O2 much faster than cyanobacteria. Consequently, the cyanobacterium Microcystis was able to survive at higher H2 O2 concentrations in mixtures with the green alga Chlorella than in monoculture. Interestingly, even the lysate of destructed Chlorella was capable to protect Microcystis, indicating a two-component H2 O2 degradation system in which Chlorella provided antioxidant enzymes and Microcystis the reductants. The level of interspecific protection provided to Microcystis depended on the density of Chlorella. These findings have implications for the mitigation of toxic cyanobacterial blooms, which threaten the water quality of many eutrophic lakes and reservoirs worldwide. In several lakes, H2 O2 has been successfully applied to suppress cyanobacterial blooms. Our results demonstrate that high densities of green algae can interfere with these lake treatments, as they may rapidly degrade the added H2 O2 and thereby protect the bloom-forming cyanobacteria.


Assuntos
Chlorella , Cianobactérias , Microcystis , Ecossistema , Peróxido de Hidrogênio , Lagos , Estresse Oxidativo
2.
Physiol Plant ; 170(1): 10-26, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32141606

RESUMO

Although cyanobacteria absorb blue light, they use it less efficiently for photosynthesis than other colors absorbed by their photosynthetic pigments. A plausible explanation for this enigmatic phenomenon is that blue light is not absorbed by phycobilisomes and, hence, causes an excitation shortage at photosystem II (PSII). This hypothesis is supported by recent physiological studies, but a comprehensive understanding of the underlying changes in gene expression is still lacking. In this study, we investigate how a switch from artificial white light to blue, orange or red light affects the transcriptome of the cyanobacterium Synechocystis sp. PCC 6803. In total, 145 genes were significantly regulated in response to blue light, whereas only a few genes responded to orange and red light. In particular, genes encoding the D1 and D2 proteins of PSII, the PSII chlorophyll-binding protein CP47 and genes involved in PSII repair were upregulated in blue light, whereas none of the photosystem I (PSI) genes responded to blue light. These changes were accompanied by a decreasing PSI:PSII ratio. Furthermore, many genes involved in gene transcription and translation and several ATP synthase genes were transiently downregulated, concurrent with a temporarily decreased growth rate in blue light. After 6-7 days, when cell densities had strongly declined, the growth rate recovered and the expression of these growth-related genes returned to initial levels. Hence, blue light induces major changes in the transcriptome of cyanobacteria, in an attempt to increase the photosynthetic activity of PSII and cope with the adverse growth conditions imposed by blue light.


Assuntos
Synechocystis , Proteínas de Bactérias , Luz , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II , Ficobilissomas , Transcriptoma/genética
3.
Photosynth Res ; 141(3): 291-301, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30820745

RESUMO

The ubiquitous chlorophyll a (Chl a) pigment absorbs both blue and red light. Yet, in contrast to green algae and higher plants, most cyanobacteria have much lower photosynthetic rates in blue than in red light. A plausible but not yet well-supported hypothesis is that blue light results in limited energy transfer to photosystem II (PSII), because cyanobacteria invest most Chl a in photosystem I (PSI), whereas their phycobilisomes (PBS) are mostly associated with PSII but do not absorb blue photons. In this paper, we compare the photosynthetic performance in blue and orange-red light of wildtype Synechocystis sp. PCC 6803 and a PBS-deficient mutant. Our results show that the wildtype had much lower biomass, Chl a content, PSI:PSII ratio and O2 production rate per PSII in blue light than in orange-red light, whereas the PBS-deficient mutant had a low biomass, Chl a content, PSI:PSII ratio, and O2 production rate per PSII in both light colors. More specifically, the wildtype displayed a similar low photosynthetic efficiency in blue light as the PBS-deficient mutant in both light colors. Our results demonstrate that the absorption of light energy by PBS and subsequent transfer to PSII are crucial for efficient photosynthesis in cyanobacteria, which may explain both the low photosynthetic efficiency of PBS-containing cyanobacteria and the evolutionary success of chlorophyll-based light-harvesting antennae in environments dominated by blue light.


Assuntos
Luz , Mutação/genética , Fotossíntese/efeitos da radiação , Ficobilissomas/metabolismo , Synechocystis/fisiologia , Synechocystis/efeitos da radiação , Biomassa , Clorofila A/metabolismo , Oxigênio/metabolismo , Consumo de Oxigênio , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/efeitos da radiação
4.
Proc Natl Acad Sci U S A ; 113(33): 9315-20, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27482094

RESUMO

Rising atmospheric CO2 concentrations are likely to affect many ecosystems worldwide. However, to what extent elevated CO2 will induce evolutionary changes in photosynthetic organisms is still a major open question. Here, we show rapid microevolutionary adaptation of a harmful cyanobacterium to changes in inorganic carbon (Ci) availability. We studied the cyanobacterium Microcystis, a notorious genus that can develop toxic cyanobacterial blooms in many eutrophic lakes and reservoirs worldwide. Microcystis displays genetic variation in the Ci uptake systems BicA and SbtA, where BicA has a low affinity for bicarbonate but high flux rate, and SbtA has a high affinity but low flux rate. Our laboratory competition experiments show that bicA + sbtA genotypes were favored by natural selection at low CO2 levels, but were partially replaced by the bicA genotype at elevated CO2 Similarly, in a eutrophic lake, bicA + sbtA strains were dominant when Ci concentrations were depleted during a dense cyanobacterial bloom, but were replaced by strains with only the high-flux bicA gene when Ci concentrations increased later in the season. Hence, our results provide both laboratory and field evidence that increasing carbon concentrations induce rapid adaptive changes in the genotype composition of harmful cyanobacterial blooms.


Assuntos
Adaptação Fisiológica , Dióxido de Carbono/metabolismo , Microcystis/fisiologia , Carbono/metabolismo , Microcystis/genética
5.
Photosynth Res ; 138(2): 177-189, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30027501

RESUMO

Several studies have described that cyanobacteria use blue light less efficiently for photosynthesis than most eukaryotic phototrophs, but comprehensive studies of this phenomenon are lacking. Here, we study the effect of blue (450 nm), orange (625 nm), and red (660 nm) light on growth of the model cyanobacterium Synechocystis sp. PCC 6803, the green alga Chlorella sorokiniana and other cyanobacteria containing phycocyanin or phycoerythrin. Our results demonstrate that specific growth rates of the cyanobacteria were similar in orange and red light, but much lower in blue light. Conversely, specific growth rates of the green alga C. sorokiniana were similar in blue and red light, but lower in orange light. Oxygen production rates of Synechocystis sp. PCC 6803 were five-fold lower in blue than in orange and red light at low light intensities but approached the same saturation level in all three colors at high light intensities. Measurements of 77 K fluorescence emission demonstrated a lower ratio of photosystem I to photosystem II (PSI:PSII ratio) and relatively more phycobilisomes associated with PSII (state 1) in blue light than in orange and red light. These results support the hypothesis that blue light, which is not absorbed by phycobilisomes, creates an imbalance between the two photosystems of cyanobacteria with an energy excess at PSI and a deficiency at the PSII-side of the photosynthetic electron transfer chain. Our results help to explain why phycobilisome-containing cyanobacteria use blue light less efficiently than species with chlorophyll-based light-harvesting antennae such as Prochlorococcus, green algae and terrestrial plants.


Assuntos
Chlorella/efeitos da radiação , Luz , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/efeitos da radiação , Complexo de Proteína do Fotossistema II/efeitos da radiação , Synechocystis/efeitos da radiação , Chlorella/fisiologia , Oxigênio/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Ficocianina/metabolismo , Ficoeritrina/metabolismo , Pigmentos Biológicos/metabolismo , Synechocystis/fisiologia
6.
Biochim Biophys Acta ; 1857(4): 396-407, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26646103

RESUMO

In the family of chlorophyll binding proteins, single helix small CAB-like proteins (SCPs) are found in all organisms performing oxygenic photosynthesis. Here, we investigated the function of these stress-inducible proteins in the cyanobacterium Synechocystis sp. PCC 6803. We compared physiological, proteome and transcriptome traits of a Photosystem I (PSI) deletion strain, which constitutively induces SCPs, and a PSI-less/ScpABCDE(-) without SCPs. The SCP mutant cells were larger in size, showed irregular thylakoid structure and differed in cell-surface morphology. Deletion of scp genes strongly affected the carbon (C) and nitrogen (N) balance, resulting in accumulation of carbohydrates and a decrease in N-rich compounds (proteins and chlorophyll). Data from transcriptomic and metabolomic experiments revealed a role of SCPs in the control of chlorophyll biosynthesis. Additionally, SCPs diminished formation of reactive oxygen species, thereby preventing damage within Photosystem II. We conclude that the lack of SCP-function to remove free chlorophyll under stress conditions has a large impact on the metabolism of the entire cell.


Assuntos
Carbono/metabolismo , Proteínas de Ligação à Clorofila/fisiologia , Nitrogênio/metabolismo , Synechocystis/metabolismo , Proteínas de Ligação à Clorofila/genética , Deleção de Genes , Perfilação da Expressão Gênica , Homeostase , Metabolômica , Espécies Reativas de Oxigênio/metabolismo
7.
Appl Environ Microbiol ; 81(22): 7730-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26319871

RESUMO

Cyanobacteria are generally assumed to be effective competitors at low CO2 levels because of their efficient CO2-concentrating mechanism (CCM), and yet how bloom-forming cyanobacteria respond to rising CO2 concentrations is less clear. Here, we investigate changes in CCM gene expression at ambient CO2 (400 ppm) and elevated CO2 (1,100 ppm) in six strains of the harmful cyanobacterium Microcystis. All strains downregulated cmpA encoding the high-affinity bicarbonate uptake system BCT1, whereas both the low- and high-affinity CO2 uptake genes were expressed constitutively. Four strains downregulated the bicarbonate uptake genes bicA and/or sbtA, whereas two strains showed constitutive expression of the bicA-sbtA operon. In one of the latter strains, a transposon insert in bicA caused low bicA and sbtA transcript levels, which made this strain solely dependent on BCT1 for bicarbonate uptake. Activity measurements of the inorganic carbon (Ci) uptake systems confirmed the CCM gene expression results. Interestingly, genes encoding the RuBisCO enzyme, structural carboxysome components, and carbonic anhydrases were not regulated. Hence, Microcystis mainly regulates the initial uptake of inorganic carbon, which might be an effective strategy for a species experiencing strongly fluctuating Ci concentrations. Our results show that CCM gene regulation of Microcystis varies among strains. The observed genetic and phenotypic variation in CCM responses may offer an important template for natural selection, leading to major changes in the genetic composition of harmful cyanobacterial blooms at elevated CO2.


Assuntos
Proteínas de Bactérias/genética , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Microcystis/genética , Proteínas de Bactérias/metabolismo , Compostos Inorgânicos/metabolismo , Microcystis/metabolismo
8.
Appl Environ Microbiol ; 81(2): 544-54, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25381232

RESUMO

Recent studies have provided evidence for both intracellular and extracellular roles of the potent hepatotoxin microcystin (MC) in the bloom-forming cyanobacterium Microcystis. Here, we surveyed transcriptomes of the wild-type strain M. aeruginosa PCC 7806 and the microcystin-deficient ΔmcyB mutant under low light conditions with and without the addition of external MC of the LR variant (MC-LR). Transcriptomic data acquired by microarray and quantitative PCR revealed substantial differences in the relative expression of genes of the central intermediary metabolism, photosynthesis, and energy metabolism. In particular, the data provide evidence for a lower photosystem I (PSI)-to-photosystem II (PSII) ratio and a more pronounced carbon limitation in the microcystin-deficient mutant. Interestingly, only 6% of the transcriptional differences could be complemented by external microcystin-LR addition. This MC signaling effect was seen exclusively for genes of the secondary metabolism category. The orphan polyketide synthase gene cluster IPF38-51 was specifically downregulated in response to external MC-LR under low light. Our data suggest a hierarchical and light-dependent cross talk of secondary metabolites and support both an intracellular and an extracellular role of MC in Microcystis.


Assuntos
Microcistinas/metabolismo , Microcystis/efeitos dos fármacos , Microcystis/metabolismo , Proteínas de Bactérias/genética , Deleção de Genes , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/genética , Análise em Microsséries , Microcystis/genética , Reação em Cadeia da Polimerase em Tempo Real , Metabolismo Secundário/efeitos dos fármacos
9.
Plant Physiol ; 165(1): 463-75, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24696521

RESUMO

A method is presented for rapid extraction of the total plastoquinone (PQ) pool from Synechocystis sp. strain PCC 6803 cells that preserves the in vivo plastoquinol (PQH2) to -PQ ratio. Cells were rapidly transferred into ice-cold organic solvent for instantaneous extraction of the cellular PQ plus PQH2 content. After high-performance liquid chromatography fractionation of the organic phase extract, the PQH2 content was quantitatively determined via its fluorescence emission at 330 nm. The in-cell PQH2-PQ ratio then followed from comparison of the PQH2 signal in samples as collected and in an identical sample after complete reduction with sodium borohydride. Prior to PQH2 extraction, cells from steady-state chemostat cultures were exposed to a wide range of physiological conditions, including high/low availability of inorganic carbon, and various actinic illumination conditions. Well-characterized electron-transfer inhibitors were used to generate a reduced or an oxidized PQ pool for reference. The in vivo redox state of the PQ pool was correlated with the results of pulse-amplitude modulation-based chlorophyll a fluorescence emission measurements, oxygen exchange rates, and 77 K fluorescence emission spectra. Our results show that the redox state of the PQ pool of Synechocystis sp. strain PCC 6803 is subject to strict homeostatic control (i.e. regulated between narrow limits), in contrast to the more dynamic chlorophyll a fluorescence signal.


Assuntos
Homeostase , Plastoquinona/metabolismo , Synechocystis/metabolismo , Técnicas de Cultura Celular por Lotes , Clorofila/metabolismo , Clorofila A , Cromatografia Líquida de Alta Pressão , Transporte de Elétrons/efeitos da radiação , Meia-Vida , Homeostase/efeitos da radiação , Luz , Oxirredução/efeitos da radiação , Oxigênio/metabolismo , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/metabolismo , Espectrometria de Fluorescência , Synechocystis/citologia , Synechocystis/crescimento & desenvolvimento , Synechocystis/efeitos da radiação
10.
New Phytol ; 204(4): 882-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25138174

RESUMO

Mixotrophy is increasingly recognized as an important and widespread nutritional strategy in various taxonomic groups ranging from protists to higher plants. We hypothesize that the availability of alternative carbon and energy sources during mixotrophy allows a switch to photoheterotrophic growth, where the photosynthetic apparatus mainly provides energy but not fixed carbon. Because such a change in the function of the photosynthetic machinery is probably reflected in its composition, we compared the photosynthetic machinery in Ochromonas danica during autotrophic and mixotrophic growth. Compared with autotrophic growth, the total pigmentation of O. danica was reduced during mixotrophic growth. Furthermore, the photosystem I (PSI):PSII ratio increased, and the cellular content of Rubisco decreased not only absolutely, but also relative to the content of PSII. The changing composition of the photosynthetic apparatus indicates a shift in its function from providing both carbon and energy during photoautotrophy to mainly providing energy during mixotrophy. This preference for photoheterotrophic growth has interesting implications for the contribution of mixotrophic species to carbon cycling in diverse ecosystems.


Assuntos
Aclimatação , Ochromonas/fisiologia , Fotossíntese , Processos Autotróficos , Biomassa , Carbono/metabolismo , Clorofila/metabolismo , Clorofila A , Ochromonas/crescimento & desenvolvimento , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Pigmentos Biológicos/análise , Pigmentos Biológicos/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
12.
Plant Cell Physiol ; 54(11): 1780-90, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24009334

RESUMO

Adjustment of gene expression during acclimation to stress conditions, such as bright light, in the cyanobacterium Synechocystis sp. PCC 6803 depends on four group 2 σ factors (SigB, SigC, SigD, SigE). A ΔsigCDE strain containing the stress-responsive SigB as the only functional group 2 σ factor appears twice as resistant to photoinhibition of photosystem II (PSII) as the control strain. Microarray analyses of the ΔsigCDE strain indicated that 77 genes in standard conditions and 79 genes in high light were differently expressed compared with the control strain. Analysis of possible photoprotective mechanisms revealed that high carotenoid content and up-regulation of the photoprotective flavodiiron operon flv4-sll0218-flv2 protected PSII in ΔsigCDE, while up-regulation of pgr5-like, hlipB or isiA genes in the mutant strain did not offer particular protection against photoinhibition. Photoinhibition resistance was lost if ΔsigCDE was grown in high CO2, where carotenoid and Flv4, Sll0218, and Flv2 contents were low. Additionally, photoinhibition resistance of the ΔrpoZ strain (lacking the omega subunit of RNA polymerase), with high carotenoid but low Flv4-Sll0218-Flv2 content, supported the importance of carotenoids in PSII protection. Carotenoids likely protect mainly by quenching of singlet oxygen, but efficient nonphotochemical quenching in ΔsigCDE might offer some additional protection. Comparison of photoinhibition kinetics in control, ΔsigCDE, and ΔrpoZ strains showed that protection by the flavodiiron operon was most efficient during the first minutes of high-light illumination.


Assuntos
Carotenoides/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Complexo de Proteína do Fotossistema II/efeitos da radiação , Fator sigma/metabolismo , Synechocystis/fisiologia , Aclimatação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Luz , Óperon/genética , Fenótipo , Fotossíntese , Deleção de Sequência , Fator sigma/genética , Synechocystis/genética , Synechocystis/efeitos da radiação , Regulação para Cima
13.
Microbiology (Reading) ; 158(Pt 2): 398-413, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22096149

RESUMO

Using metabolic and transcriptomic phenotyping, we studied acclimation of cyanobacteria to low inorganic carbon (LC) conditions and the requirements for coordinated alteration of metabolism and gene expression. To analyse possible metabolic signals for LC sensing and compensating reactions, the carboxysome-less mutant ΔccmM and the photorespiratory mutant ΔglcD1/D2 were compared with wild-type (WT) Synechocystis. Metabolic phenotyping revealed accumulation of 2-phosphoglycolate (2PG) in ΔccmM and of glycolate in ΔglcD1/D2 in LC- but also in high inorganic carbon (HC)-grown mutant cells. The accumulation of photorespiratory metabolites provided evidence for the oxygenase activity of RubisCO at HC. The global gene expression patterns of HC-grown ΔccmM and ΔglcD1/D2 showed differential expression of many genes involved in photosynthesis, high-light stress and N assimilation. In contrast, the transcripts of LC-specific genes, such as those for inorganic carbon transporters and components of the carbon-concentrating mechanism (CCM), remained unchanged in HC cells. After a shift to LC, ΔglcD1/D2 and WT cells displayed induction of many of the LC-inducible genes, whereas ΔccmM lacked similar changes in expression. From the coincidence of the presence of 2PG in ΔccmM without CCM induction and of glycolate in ΔglcD1/D2 with CCM induction, we regard a direct role for 2PG as a metabolic signal for the induction of CCM during LC acclimation as less likely. Instead, our data suggest a potential role for glycolate as a signal molecule for enhanced expression of CCM genes.


Assuntos
Proteínas de Bactérias/genética , Carbono/metabolismo , Fotossíntese , Synechocystis/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Luz , Mutação , Fotossíntese/efeitos da radiação , Synechocystis/genética , Synechocystis/efeitos da radiação
14.
Plant Physiol ; 155(3): 1445-57, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21205618

RESUMO

Physiological adaptation and genome-wide expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to gradual transitions between nitrogen-limited and light-limited growth conditions were measured in continuous cultures. Transitions induced changes in pigment composition, light absorption coefficient, photosynthetic electron transport, and specific growth rate. Physiological changes were accompanied by reproducible changes in the expression of several hundred open reading frames, genes with functions in photosynthesis and respiration, carbon and nitrogen assimilation, protein synthesis, phosphorus metabolism, and overall regulation of cell function and proliferation. Cluster analysis of the nearly 1,600 regulated open reading frames identified eight clusters, each showing a different temporal response during the transitions. Two large clusters mirrored each other. One cluster included genes involved in photosynthesis, which were up-regulated during light-limited growth but down-regulated during nitrogen-limited growth. Conversely, genes in the other cluster were down-regulated during light-limited growth but up-regulated during nitrogen-limited growth; this cluster included several genes involved in nitrogen uptake and assimilation. These results demonstrate complementary regulation of gene expression for two major metabolic activities of cyanobacteria. Comparison with batch-culture experiments revealed interesting differences in gene expression between batch and continuous culture and illustrates that continuous-culture experiments can pick up subtle changes in cell physiology and gene expression.


Assuntos
Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Luz , Nitrogênio/farmacologia , Synechocystis/genética , Synechocystis/fisiologia , Análise por Conglomerados , Genes Bacterianos/genética , Família Multigênica/genética , Análise Espectral , Synechocystis/citologia , Synechocystis/crescimento & desenvolvimento
15.
Physiol Plant ; 145(3): 426-39, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22289076

RESUMO

Sequential adaptation to nitrogen deprivation and ultimately to full starvation requires coordinated adjustment of cellular functions. We investigated changes in gene expression and cell physiology of the cyanobacterium Synechocystis PCC 6803 during 96 h of nitrogen starvation. During the first 6 h, the transcriptome showed activation of nitrogen uptake and assimilation systems and of the core nitrogen and carbon assimilation regulators. However, the nitrogen-deprived cells still grew at the same rate as the control and even showed transiently increased expression of phycobilisome genes. After 12 h, cell growth decreased and chlorosis started with degradation of the nitrogen-rich phycobilisomes. During this phase, the transcriptome showed suppression of genes for phycobilisomes, for carbon fixation and for de novo protein synthesis. Interestingly, photosynthetic activity of both photosystem I (PSI) and photosystem II was retained quite well. Excess electrons were quenched by the induction of terminal oxidase and hydrogenase genes, compensating for the diminished carbon fixation and nitrate reduction activity. After 48 h, the cells ceased most activities. A marked exception was the retained PSI gene transcription, possibly this supports the viability of Synechocystis cells and enables rapid recovery after relieving from nitrogen starvation. During early recovery, many genes changed expression, supporting the resumed cellular activity. In total, our results distinguished three phases during gradual nitrogen depletion: (1) an immediate response, (2) short-term acclimation and (3) long-term survival. This shows that cyanobacteria respond to nitrogen starvation by a cascade of physiological adaptations reflected by numerous changes in the transcriptome unfolding at different timescales.


Assuntos
Nitrogênio/metabolismo , Fotossíntese , Synechocystis/metabolismo , Aclimatação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Transporte de Elétrons , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Viabilidade Microbiana , Análise de Sequência com Séries de Oligonucleotídeos , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/genética , Ficobilissomas/metabolismo , Synechocystis/genética , Synechocystis/crescimento & desenvolvimento , Fatores de Tempo , Transcriptoma
16.
Biochim Biophys Acta ; 1777(3): 308-16, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18164679

RESUMO

The PsaE protein is located at the reducing side of photosystem I (PSI) and is involved in docking the soluble electron acceptors, particularly ferredoxin. However, deletion of the psaE gene in the cyanobacterium Synechocystis sp. strain PCC 6803 inhibited neither photoautotrophic growth, nor in vivo linear and cyclic electron flows. Using photoacoustic spectroscopy, we detected an oxygen-dependent, PSI-mediated energy storage activity in the DeltapsaE null mutant, which was not present in the wild type (WT). The expression of the genes encoding catalase (katG) and iron superoxide dismutase (sodB) was upregulated in the DeltapsaE mutant, and the increase in katG expression was correlated with an increase in catalase activity of the cells. When catalases were inhibited by sodium azide, the production of reactive oxygen species was enhanced in DeltapsaE relative to WT. Moreover, sodium azide strongly impaired photoautotrophic growth of the DeltapsaE mutant cells while WT was much less sensitive to this inhibitor. The katG gene was deleted in the DeltapsaE mutant, and the resulting double mutant was more photosensitive than the single mutants, showing cell bleaching and lipid peroxidation in high light. Our results show that the presence of the PsaE polypeptide at the reducing side of PSI has a function in avoidance of electron leakage to oxygen in the light (Mehler reaction) and the resulting formation of toxic oxygen species. PsaE-deficient Synechocystis cells can counteract the chronic photoreduction of oxygen by increasing their capacity to detoxify reactive oxygen species.


Assuntos
Luz , Estresse Oxidativo/efeitos da radiação , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Synechocystis/efeitos da radiação , Catalase/antagonistas & inibidores , Catalase/biossíntese , Catalase/genética , Transporte de Elétrons/efeitos da radiação , Indução Enzimática , Inibidores Enzimáticos/farmacologia , Sequestradores de Radicais Livres/metabolismo , Cinética , Peroxidação de Lipídeos/efeitos da radiação , Mutação , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema I/genética , Azida Sódica/farmacologia , Análise Espectral , Superóxido Dismutase/biossíntese , Synechocystis/efeitos dos fármacos , Synechocystis/enzimologia , Synechocystis/genética , Synechocystis/metabolismo
17.
Eur Respir J ; 33(2): 252-62, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18829681

RESUMO

Inducible nitric oxide synthase (iNOS) inhibition was recently shown to exert no effect on allergen challenge in human asthma, raising serious concerns about the role of the protein in the disease. The present study investigated the role of iNOS in ovalbumin-induced eosinophilia from the perspective of its relationship with poly(ADP-ribose) polymerase-1 (PARP-1) and oxidative DNA damage. A mouse model of ovalbumin-induced eosinophilia was used to conduct the studies. iNOS-associated protein nitration and tissue damage were partially responsible for allergen-induced eosinophilia. iNOS expression was required for oxidative DNA damage and PARP-1 activation upon allergen challenge. PARP-1 was required for iNOS expression and protein nitration, and this requirement was connected to nuclear factor-kappaB. PARP-1 was an important substrate for iNOS-associated by-products after ovalbumin-challenge. PARP-1 nitration blocked its poly(ADP-ribosyl)ation activity. Interleukin-5 re-establishment in ovalbumin-exposed PARP-1(-/-) mice reversed eosinophilia and partial mucus production without a reversal of iNOS expression, concomitant protein nitration or associated DNA damage. The present results demonstrate a reciprocal relationship between inducible nitric oxide synthase and poly(ADP-ribose) polymerase-1 and suggest that expression of inducible nitric oxide synthase may be dispensable for eosinophilia after interleukin-5 production. Inducible nitric oxide synthase may be required for oxidative DNA damage and full manifestation of mucus production. Such dispensability may explain, in part, the reported ineffectiveness of inducible nitric oxide synthase inhibition in preventing allergen-induced inflammation in humans.


Assuntos
Eosinofilia/enzimologia , Regulação Enzimológica da Expressão Gênica , Óxido Nítrico Sintase Tipo II/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Alérgenos/metabolismo , Animais , Dano ao DNA , Eosinofilia/metabolismo , Interleucina-5/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Modelos Biológicos , NF-kappa B/metabolismo , Poli(ADP-Ribose) Polimerase-1
18.
Planta ; 230(4): 625-37, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19578872

RESUMO

In cyanobacteria, photorespiratory 2-phosphoglycolate (2PG) metabolism is mediated by three different routes, including one route involving the glycine decarboxylase complex (Gcv). It has been suggested that, in addition to conversion of 2PG into non-toxic intermediates, this pathway is important for acclimation to high-light. The photoreduction of O(2) (Mehler reaction), which is mediated by two flavoproteins Flv1 and Flv3 in cyanobacteria, dissipates excess reductants under high-light by the four electron-reduction of oxygen to water. Single and double mutants defective in these processes were constructed to investigate the relation between photorespiratory 2PG-metabolism and the photoreduction of O(2) in the cyanobacterium Synechocystis sp. PCC 6803. The single mutants Deltaflv1, Deltaflv3, and DeltagcvT, as well as the double mutant Deltaflv1/DeltagcvT, were completely segregated but not the double mutant Deltaflv3/DeltagcvT, suggesting that the T-protein subunit of the Gcv (GcvT) and Flv3 proteins cooperate in an essential process. This assumption is supported by the following results: (1) The mutant Deltaflv3/DeltagcvT showed a considerable longer lag phase and sometimes bleached after shifts from slow (low light, air CO(2)) to rapid (standard light, 5% CO(2)) growing conditions. (2) Photoinhibition experiments indicated a decreased ability of the mutant Deltaflv3/DeltagcvT to cope with high-light. (3) Fluorescence measurements showed that the photosynthetic electron chain is reduced in this mutant. Our data suggest that the photorespiratory 2PG-metabolism and the photoreduction of O(2), particularly that catalyzed by Flv3, cooperate during acclimation to high-light stress in cyanobacteria.


Assuntos
Aclimatação/efeitos da radiação , Glicolatos/metabolismo , Luz , Oxigênio/metabolismo , Synechocystis/metabolismo , Synechocystis/efeitos da radiação , Aclimatação/efeitos dos fármacos , Aerobiose/efeitos dos fármacos , Aerobiose/efeitos da radiação , Dióxido de Carbono/farmacologia , Clorofila/metabolismo , Fluorescência , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Genótipo , Immunoblotting , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/genética , Synechocystis/crescimento & desenvolvimento
19.
Biochim Biophys Acta ; 1767(12): 1393-400, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17980697

RESUMO

Cyanobacteria respond to iron deficiency during growth by expressing the isiA gene, which produces a chlorophyll-carotenoid protein complex known as IsiA or CP43'. Long-term iron deficiency results in the formation of large IsiA aggregates, some of which associate with photosystem I (PSI) while others are not connected to a photosystem. The fluorescence at room temperature of these unconnected aggregates is strongly quenched, which points to a photoprotective function. In this study, we report time-resolved fluorescence measurements of IsiA aggregates at low temperatures. The average fluorescence lifetimes are estimated to be about 600 ps at 5 K and 150 ps at 80 K. Both lifetimes are much shorter than that of the monomeric complex CP47 at 77 K. We conclude that IsiA aggregates quench fluorescence to a significant extent at cryogenic temperatures. We show by low-temperature fluorescence spectroscopy that unconnected IsiA is present already after two days of growth in an iron-deficient medium, when PSI and PSII are still present in significant amounts and that under these conditions the fluorescence quenching is similar to that after 18 days, when PSI is almost completely absent. We conclude that unconnected IsiA provides photoprotection in all stages of iron deficiency.


Assuntos
Proteínas de Bactérias/metabolismo , Temperatura Baixa , Fluorescência , Deficiências de Ferro , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Espectrometria de Fluorescência , Synechocystis/metabolismo
20.
BMC Genomics ; 9: 274, 2008 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-18534010

RESUMO

BACKGROUND: The colonial cyanobacterium Microcystis proliferates in a wide range of freshwater ecosystems and is exposed to changing environmental factors during its life cycle. Microcystis blooms are often toxic, potentially fatal to animals and humans, and may cause environmental problems. There has been little investigation of the genomics of these cyanobacteria. RESULTS: Deciphering the 5,172,804 bp sequence of Microcystis aeruginosa PCC 7806 has revealed the high plasticity of its genome: 11.7% DNA repeats containing more than 1,000 bases, 6.8% putative transposases and 21 putative restriction enzymes. Compared to the genomes of other cyanobacterial lineages, strain PCC 7806 contains a large number of atypical genes that may have been acquired by lateral transfers. Metabolic pathways, such as fermentation and a methionine salvage pathway, have been identified, as have genes for programmed cell death that may be related to the rapid disappearance of Microcystis blooms in nature. Analysis of the PCC 7806 genome also reveals striking novel biosynthetic features that might help to elucidate the ecological impact of secondary metabolites and lead to the discovery of novel metabolites for new biotechnological applications. M. aeruginosa and other large cyanobacterial genomes exhibit a rapid loss of synteny in contrast to other microbial genomes. CONCLUSION: Microcystis aeruginosa PCC 7806 appears to have adopted an evolutionary strategy relying on unusual genome plasticity to adapt to eutrophic freshwater ecosystems, a property shared by another strain of M. aeruginosa (NIES-843). Comparisons of the genomes of PCC 7806 and other cyanobacterial strains indicate that a similar strategy may have also been used by the marine strain Crocosphaera watsonii WH8501 to adapt to other ecological niches, such as oligotrophic open oceans.


Assuntos
Genoma Bacteriano , Microcystis/genética , Animais , Enzimas de Restrição-Modificação do DNA/genética , DNA Bacteriano/genética , DNA Intergênico/genética , DNA Ribossômico/genética , Ecossistema , Evolução Molecular , Água Doce/microbiologia , Humanos , Microcystis/classificação , Microcystis/patogenicidade , Microcystis/fisiologia , Dados de Sequência Molecular , Família Multigênica , Filogenia , Sequências Repetitivas de Ácido Nucleico , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA