Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Hum Neurosci ; 15: 541369, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746721

RESUMO

Variable responses to transcranial direct current stimulation (tDCS) protocols across individuals are widely reported, but the reasons behind this variation are unclear. This includes tDCS protocols meant to improve attention. Attentional control is impacted by top-down and bottom-up processes, and this relationship is affected by state characteristics such as anxiety. According to Attentional Control Theory, anxiety biases attention towards bottom-up and stimulus-driven processing. The goal of this study was to explore the extent to which differences in state anxiety and related measures affect visual attention and category learning, both with and without the influence of tDCS. Using discovery learning, participants were trained to classify pictures of European streets into two categories while receiving 30 min of 2.0 mA anodal, cathodal, or sham tDCS over the rVLPFC. The pictures were classifiable according to two separate rules, one stimulus and one hypothesis-driven. The Remote Associates Test (RAT), Profile of Mood States, and Attention Networks Task (ANT) were used to understand the effects of individual differences at baseline on subsequent tDCS-mediated learning. Multinomial logistic regression was fit to predict rule learning based on the baseline measures, with subjects classified according to whether they used the stimulus-driven or hypothesis-driven rule to classify the pictures. The overall model showed a classification accuracy of 74.1%. The type of tDCS stimulation applied, attentional orienting score, and self-reported mood were significant predictors of different categories of rule learning. These results indicate that anxiety can influence the quality of subjects' attention at the onset of the task and that these attentional differences can influence tDCS-mediated category learning during the rapid assessment of visual scenes. These findings have implications for understanding the complex interactions that give rise to the variability in response to tDCS.

2.
Brain Stimul ; 13(2): 393-400, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31848068

RESUMO

BACKGROUND: After two decades of transcranial direct current stimulation (tDCS) research, it is still unclear which applications benefit most from which tDCS protocols. One prospect is the acceleration of learning, where previous work has demonstrated that anodal tDCS applied to the right ventrolateral prefrontal cortex (rVLPFC) is capable of doubling the rate of learning in a visual camouflaged threat detection and category learning task. GOALS: Questions remain as to the specific cognitive mechanisms underlying this learning enhancement, and whether it generalizes to other tasks. The goal of the current project was to expand previous findings by employing a novel category learning task. METHODS: Participants learned to classify pictures of European streets within a discovery learning paradigm. In a double-blind design, 54 participants were randomly assigned to 30 min of tDCS using either 2.0 mA anodal (n = 18), cathodal (n = 18), or 0.1 mA sham (n = 18) tDCS over the rVLPFC. RESULTS: A linear mixed-model revealed a significant effect of tDCS condition on classification accuracy across training (p = 0.001). Compared to a 4.2% increase in sham participants, anodal tDCS over F10 increased performance by 20.6% (d = 1.71) and cathodal tDCS by 14.4% (d = 1.16). CONCLUSIONS: These results provide further evidence for the capacity of tDCS applied to rVLPFC to enhance learning, showing a greater than quadrupling of test performance after training (491% of sham) in a difficult category learning task. Combined with our previous studies, these results suggest a generalized performance enhancement. Other tasks requiring sustained attention, insight and/or category learning may also benefit from this protocol.


Assuntos
Aprendizagem , Córtex Pré-Frontal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Atenção , Método Duplo-Cego , Feminino , Humanos , Masculino
3.
Front Neurol ; 9: 1007, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30546342

RESUMO

Background: Transcranial Ultrasound Stimulation (tUS) is an emerging technique that uses ultrasonic waves to noninvasively modulate brain activity. As with other forms of non-invasive brain stimulation (NIBS), tUS may be useful for altering cortical excitability and neuroplasticity for a variety of research and clinical applications. The effects of tUS on cortical excitability are still unclear, and further complications arise from the wide parameter space offered by various types of devices, transducer arrangements, and stimulation protocols. Diagnostic ultrasound imaging devices are safe, commonly available systems that may be useful for tUS. However, the feasibility of modifying brain activity with diagnostic tUS is currently unknown. Objective: We aimed to examine the effects of a commercial diagnostic tUS device using an imaging protocol on cortical excitability. We hypothesized that imaging tUS applied to motor cortex could induce changes in cortical excitability as measured using a transcranial magnetic stimulation (TMS) motor evoked potential (MEP) paradigm. Methods: Forty-three subjects were assigned to receive either verum (n = 21) or sham (n = 22) diagnostic tUS in a single-blind design. Baseline motor cortex excitability was measured using MEPs elicited by TMS. Diagnostic tUS was subsequently administered to the same cortical area for 2 min, immediately followed by repeated post-stimulation MEPs recorded up to 16 min post-stimulation. Results: Verum tUS increased excitability in the motor cortex (from baseline) by 33.7% immediately following tUS (p = 0.009), and 32.4% (p = 0.047) 6 min later, with excitability no longer significantly different from baseline by 11 min post-stimulation. By contrast, subjects receiving sham tUS showed no significant changes in MEP amplitude. Conclusion: These findings demonstrate that tUS delivered via a commercially available diagnostic imaging ultrasound system transiently increases excitability in the motor cortex as measured by MEPs. Diagnostic tUS devices are currently used for internal imaging in many health care settings, and the present results suggest that these same devices may also offer a promising tool for noninvasively modulating activity in the central nervous system. Further studies exploring the use of diagnostic imaging devices for neuromodulation are warranted.

4.
Mem Cognit ; 34(8): 1652-66, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17489292

RESUMO

Recent research (e.g., Siegler, 1996) has discovered the important and vital role that variability plays among strategy use and development over time. However, as many researchers have pointed out (e.g., Miller, 1993), the majority of the research addressing this issue has focused on the outcomes, rather than on the potentially more informative aspects of variability, strategy development, and the process of adaptation. In this study, we examined the role of variability during strategy development, utilizing a longitudinal method. Thirteen participants were studied over 3 months as they coached a simulated football team. The results suggest that variability plays a major role in adaptive skill acquisition in a dynamic environment--in the direction, however, opposite to that predicted by previous research done with simple static tasks.


Assuntos
Adaptação Psicológica , Meio Ambiente , Adulto , Feminino , Humanos , Aprendizagem , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA