Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Am Chem Soc ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39347826

RESUMO

The reverse water-gas shift (RWGS) reaction is a key technology of the chemical industry, central to the emerging circular carbon economy. Pt-based catalysts have previously been shown to effectively promote RWGS, especially when modified by promoter elements. However, their active states are still poorly understood. Here, we show that the intimate incorporation of an iron promoter into metal-oxide-supported Pt-based nanoparticles can increase their activity and selectivity for the low temperature reverse water-gas shift (LT-RWGS) substantially and drastically outperform unpromoted Pt-based materials. Specifically, the study explores the promotional effect of iron in Pt-Fe bimetallic systems supported on silica (PtxFey@SiO2) prepared by surface organometallic chemistry (SOMC). The most active catalyst (Pt1Fe1@SiO2) shows high selectivity (>99% CO) toward CO at a formation rate of 0.192 molCO h-1 gcat-1, which is significantly higher than that of monometallic Pt@SiO2 (96% sel. and 0.022 molCO h-1 gcat-1). In-situ diffuse reflectance FT-IR spectroscopy (DRIFTS) and X-ray absorption spectroscopy (XAS) indicate a dynamic process at the catalyst surface under the reaction conditions, revealing distinct reaction pathways for the monometallic Pt@SiO2 and bimetallic PtxFey@SiO2 systems.

2.
Neuroimage ; 242: 118451, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34358660

RESUMO

When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to understand potential confounds and sources of variation in the process. While cross-scanner and cross-protocol effects on diffusion microstructure measures are well described (in particular fractional anisotropy and mean diffusivity), it is unknown how potential sources of variation effect bundle segmentation results, which features of the bundle are most affected, where variability occurs, nor how these sources of variation depend upon the method used to reconstruct and segment bundles. In this study, we investigate six potential sources of variation, or confounds, for bundle segmentation: variation (1) across scan repeats, (2) across scanners, (3) across vendors (4) across acquisition resolution, (5) across diffusion schemes, and (6) across diffusion sensitization. We employ four different bundle segmentation workflows on two benchmark multi-subject cross-scanner and cross-protocol databases, and investigate reproducibility and biases in volume overlap, shape geometry features of fiber pathways, and microstructure features within the pathways. We find that the effects of acquisition protocol, in particular acquisition resolution, result in the lowest reproducibility of tractography and largest variation of features, followed by vendor-effects, scanner-effects, and finally diffusion scheme and b-value effects which had similar reproducibility as scan-rescan variation. However, confounds varied both across pathways and across segmentation workflows, with some bundle segmentation workflows more (or less) robust to sources of variation. Despite variability, bundle dissection is consistently able to recover the same location of pathways in the deep white matter, with variation at the gray matter/ white matter interface. Next, we show that differences due to the choice of bundle segmentation workflows are larger than any other studied confound, with low-to-moderate overlap of the same intended pathway when segmented using different methods. Finally, quantifying microstructure features within a pathway, we show that tractography adds variability over-and-above that which exists due to noise, scanner effects, and acquisition effects. Overall, these confounds need to be considered when harmonizing diffusion datasets, interpreting or combining data across sites, and when attempting to understand the successes and limitations of different methodologies in the design and development of new tractography or bundle segmentation methods.


Assuntos
Imagem de Tensor de Difusão/métodos , Substância Branca/diagnóstico por imagem , Anisotropia , Humanos , Processamento de Imagem Assistida por Computador , Reprodutibilidade dos Testes
3.
Neuroimage ; 243: 118502, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34433094

RESUMO

White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and well-chosen constraints and decisions in the dissection process.


Assuntos
Imagem de Tensor de Difusão/métodos , Dissecação/métodos , Substância Branca/diagnóstico por imagem , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Vias Neurais/diagnóstico por imagem
4.
Magn Reson Med ; 86(6): 3304-3320, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34270123

RESUMO

PURPOSE: Diffusion-weighted imaging allows investigators to identify structural, microstructural, and connectivity-based differences between subjects, but variability due to session and scanner biases is a challenge. METHODS: To investigate DWI variability, we present MASiVar, a multisite data set consisting of 319 diffusion scans acquired at 3 T from b = 1000 to 3000 s/mm2 across 14 healthy adults, 83 healthy children (5 to 8 years), three sites, and four scanners as a publicly available, preprocessed, and de-identified data set. With the adult data, we demonstrate the capacity of MASiVar to simultaneously quantify the intrasession, intersession, interscanner, and intersubject variability of four common DWI processing approaches: (1) a tensor signal representation, (2) a multi-compartment neurite orientation dispersion and density model, (3) white-matter bundle segmentation, and (4) structural connectomics. Respectively, we evaluate region-wise fractional anisotropy, mean diffusivity, and principal eigenvector; region-wise CSF volume fraction, intracellular volume fraction, and orientation dispersion index; bundle-wise shape, volume, fractional anisotropy, and length; and whole connectome correlation and maximized modularity, global efficiency, and characteristic path length. RESULTS: We plot the variability in these measures at each level and find that it consistently increases with intrasession to intersession to interscanner to intersubject effects across all processing approaches and that sometimes interscanner variability can approach intersubject variability. CONCLUSIONS: This study demonstrates the potential of MASiVar to more globally investigate DWI variability across multiple levels and processing approaches simultaneously and suggests harmonization between scanners for multisite analyses should be considered before inference of group differences on subjects.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Adulto , Anisotropia , Encéfalo/diagnóstico por imagem , Criança , Imagem de Difusão por Ressonância Magnética , Humanos , Neuritos
5.
Magn Reson Med ; 86(1): 456-470, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33533094

RESUMO

PURPOSE: Diffusion weighted MRI imaging (DWI) is often subject to low signal-to-noise ratios (SNRs) and artifacts. Recent work has produced software tools that can correct individual problems, but these tools have not been combined with each other and with quality assurance (QA). A single integrated pipeline is proposed to perform DWI preprocessing with a spectrum of tools and produce an intuitive QA document. METHODS: The proposed pipeline, built around the FSL, MRTrix3, and ANTs software packages, performs DWI denoising; inter-scan intensity normalization; susceptibility-, eddy current-, and motion-induced artifact correction; and slice-wise signal drop-out imputation. To perform QA on the raw and preprocessed data and each preprocessing operation, the pipeline documents qualitative visualizations, quantitative plots, gradient verifications, and tensor goodness-of-fit and fractional anisotropy analyses. RESULTS: Raw DWI data were preprocessed and quality checked with the proposed pipeline and demonstrated improved SNRs; physiologic intensity ratios; corrected susceptibility-, eddy current-, and motion-induced artifacts; imputed signal-lost slices; and improved tensor fits. The pipeline identified incorrect gradient configurations and file-type conversion errors and was shown to be effective on externally available datasets. CONCLUSIONS: The proposed pipeline is a single integrated pipeline that combines established diffusion preprocessing tools from major MRI-focused software packages with intuitive QA.


Assuntos
Artefatos , Imagem de Difusão por Ressonância Magnética , Anisotropia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Movimento (Física)
6.
Neuroimage ; 221: 117128, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673745

RESUMO

Cross-scanner and cross-protocol variability of diffusion magnetic resonance imaging (dMRI) data are known to be major obstacles in multi-site clinical studies since they limit the ability to aggregate dMRI data and derived measures. Computational algorithms that harmonize the data and minimize such variability are critical to reliably combine datasets acquired from different scanners and/or protocols, thus improving the statistical power and sensitivity of multi-site studies. Different computational approaches have been proposed to harmonize diffusion MRI data or remove scanner-specific differences. To date, these methods have mostly been developed for or evaluated on single b-value diffusion MRI data. In this work, we present the evaluation results of 19 algorithms that are developed to harmonize the cross-scanner and cross-protocol variability of multi-shell diffusion MRI using a benchmark database. The proposed algorithms rely on various signal representation approaches and computational tools, such as rotational invariant spherical harmonics, deep neural networks and hybrid biophysical and statistical approaches. The benchmark database consists of data acquired from the same subjects on two scanners with different maximum gradient strength (80 and 300 â€‹mT/m) and with two protocols. We evaluated the performance of these algorithms for mapping multi-shell diffusion MRI data across scanners and across protocols using several state-of-the-art imaging measures. The results show that data harmonization algorithms can reduce the cross-scanner and cross-protocol variabilities to a similar level as scan-rescan variability using the same scanner and protocol. In particular, the LinearRISH algorithm based on adaptive linear mapping of rotational invariant spherical harmonics features yields the lowest variability for our data in predicting the fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK) and the rotationally invariant spherical harmonic (RISH) features. But other algorithms, such as DIAMOND, SHResNet, DIQT, CMResNet show further improvement in harmonizing the return-to-origin probability (RTOP). The performance of different approaches provides useful guidelines on data harmonization in future multi-site studies.


Assuntos
Algoritmos , Encéfalo/diagnóstico por imagem , Aprendizado Profundo , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Adulto , Imagem de Difusão por Ressonância Magnética/instrumentação , Imagem de Difusão por Ressonância Magnética/normas , Humanos , Processamento de Imagem Assistida por Computador/normas , Neuroimagem/instrumentação , Neuroimagem/normas , Análise de Regressão
7.
Neuroimage ; 185: 1-11, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30317017

RESUMO

Diffusion MRI fiber tractography is widely used to probe the structural connectivity of the brain, with a range of applications in both clinical and basic neuroscience. Despite widespread use, tractography has well-known pitfalls that limits the anatomical accuracy of this technique. Numerous modern methods have been developed to address these shortcomings through advances in acquisition, modeling, and computation. To test whether these advances improve tractography accuracy, we organized the 3-D Validation of Tractography with Experimental MRI (3D-VoTEM) challenge at the ISBI 2018 conference. We made available three unique independent tractography validation datasets - a physical phantom and two ex vivo brain specimens - resulting in 176 distinct submissions from 9 research groups. By comparing results over a wide range of fiber complexities and algorithmic strategies, this challenge provides a more comprehensive assessment of tractography's inherent limitations than has been reported previously. The central results were consistent across all sub-challenges in that, despite advances in tractography methods, the anatomical accuracy of tractography has not dramatically improved in recent years. Taken together, our results independently confirm findings from decades of tractography validation studies, demonstrate inherent limitations in reconstructing white matter pathways using diffusion MRI data alone, and highlight the need for alternative or combinatorial strategies to accurately map the fiber pathways of the brain.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Vias Neurais/anatomia & histologia , Humanos
8.
J Zoo Wildl Med ; 50(1): 254-257, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31120686

RESUMO

Mycoplasma species are important pathogens of captive and free-ranging chelonians. Bourret's box turtle (Cuora bourreti) is a critically endangered species of Indochinese box turtle in the family Geoemydidae. Four privately owned wild-caught Bourret's box turtles were presented for clinical evaluation for anorexia and lethargy following shipment from a reptile wholesaler 3 wk prior. Choanal-cloacal swabs of two of the turtles were positive for Mycoplasma sp. by polymerase chain reaction. Sequencing of the 16S rRNA gene and 16S-23S rRNA intergenic spacer was 99% homologous to an unclassified Mycoplasma sp. previously documented in free-ranging and captive North American species of the family Emydidae. The potential of Mycoplasma sp. to induce disease in Bourret's box turtles is unknown. Global trade in live reptiles is believed to have facilitated this potential expansion of host range.


Assuntos
Infecções por Mycoplasma/veterinária , Mycoplasma/isolamento & purificação , Tartarugas , Animais , DNA Espaçador Ribossômico/análise , Espécies em Perigo de Extinção , Feminino , Masculino , Mycoplasma/classificação , Mycoplasma/genética , Infecções por Mycoplasma/diagnóstico , Infecções por Mycoplasma/microbiologia , Pennsylvania , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/análise , Análise de Sequência de DNA/veterinária
9.
Chem Sci ; 15(8): 3028-3032, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38404381

RESUMO

Molecular-level understanding of the acid/base properties of heterogeneous catalysts requires the development of selective spectroscopic probes to establish structure-activity relationships. In this work we show that substituting the surface protons in oxide supports by isolobal N-heterocyclic carbene (NHC) Ag cations and measuring their 109Ag nuclear magnetic resonance (NMR) signatures enables to probe the speciation and to evaluate the corresponding Brønsted acidity of the substituted OH surface sites. Specifically, a series of silver N-heterocyclic carbene (NHC) Ag(i) complexes of general formula [(NHC)AgX] are synthesized and characterized, showing that the 109Ag NMR chemical shift of the series correlates with the Brønsted acidity of the conjugate acid of X- (i.e., HX), thus establishing an acidity scale based on 109Ag NMR chemical shift. The methodology is then used to evaluate the Brønsted acidity of the OH sites of representative oxide materials using Dynamic Nuclear Polarization (DNP-)enhanced solid-state NMR spectroscopy.

10.
Sleep Adv ; 4(1): zpad033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37750160

RESUMO

Study Objectives: Despite the global expansion of wind farms, effects of wind farm noise (WFN) on sleep remain poorly understood. This protocol details a randomized controlled trial designed to compare the sleep disruption characteristics of WFN versus road traffic noise (RTN). Methods: This study was a prospective, seven night within-subjects randomized controlled in-laboratory polysomnography-based trial. Four groups of adults were recruited from; <10 km away from a wind farm, including those with, and another group without, noise-related complaints; an urban RTN exposed group; and a group from a quiet rural area. Following an acclimation night, participants were exposed, in random order, to two separate nights with 20-s or 3-min duration WFN and RTN noise samples reproduced at multiple sound pressure levels during established sleep. Four other nights tested for continuous WFN exposure during wake and/or sleep on sleep outcomes. Results: The primary analyses will assess changes in electroencephalography (EEG) assessed as micro-arousals (EEG shifts to faster frequencies lasting 3-15 s) and awakenings (>15 s events) from sleep by each noise type with acute (20-s) and more sustained (3-min) noise exposures. Secondary analyses will compare dose-response effects of sound pressure level and noise type on EEG K-complex probabilities and quantitative EEG measures, and cardiovascular activation responses. Group effects, self-reported noise sensitivity, and wake versus sleep noise exposure effects will also be examined. Conclusions: This study will help to clarify if wind farm noise has different sleep disruption characteristics compared to road traffic noise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA