Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 184(13): 3502-3518.e33, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34048700

RESUMO

Thermogenic adipocytes possess a therapeutically appealing, energy-expending capacity, which is canonically cold-induced by ligand-dependent activation of ß-adrenergic G protein-coupled receptors (GPCRs). Here, we uncover an alternate paradigm of GPCR-mediated adipose thermogenesis through the constitutively active receptor, GPR3. We show that the N terminus of GPR3 confers intrinsic signaling activity, resulting in continuous Gs-coupling and cAMP production without an exogenous ligand. Thus, transcriptional induction of Gpr3 represents the regulatory parallel to ligand-binding of conventional GPCRs. Consequently, increasing Gpr3 expression in thermogenic adipocytes is alone sufficient to drive energy expenditure and counteract metabolic disease in mice. Gpr3 transcription is cold-stimulated by a lipolytic signal, and dietary fat potentiates GPR3-dependent thermogenesis to amplify the response to caloric excess. Moreover, we find GPR3 to be an essential, adrenergic-independent regulator of human brown adipocytes. Taken together, our findings reveal a noncanonical mechanism of GPCR control and thermogenic activation through the lipolysis-induced expression of constitutively active GPR3.


Assuntos
Tecido Adiposo Marrom/metabolismo , Receptor Constitutivo de Androstano/metabolismo , Lipólise , Receptores Acoplados a Proteínas G/metabolismo , Termogênese , Adipócitos/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Temperatura Baixa , Gorduras na Dieta/farmacologia , Humanos , Camundongos Endogâmicos C57BL , Fenótipo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Sistema Nervoso Simpático/metabolismo , Transcrição Gênica
2.
Int J Mol Sci ; 21(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560352

RESUMO

BACKGROUND: Intercellular communication mediated by cationic fluxes through the Connexin family of gap junctions regulates glucose-stimulated insulin secretion and beta cell defense against inflammatory stress. Rotigaptide (RG, ZP123) is a peptide analog that increases intercellular conductance in cardiac muscle cells by the prevention of dephosphorylation and thereby uncoupling of Connexin-43 (Cx43), possibly via action on unidentified protein phosphatases. For this reason, it is being studied in human arrhythmias. It is unknown if RG protects islet cell function and viability against inflammatory or metabolic stress, a question of considerable translational interest for the treatment of diabetes. METHODS: Apoptosis was measured in human islets shown to express Cx43, treated with RG or the control peptide ZP119 and exposed to glucolipotoxicity or IL-1ß + IFNÉ£. INS-1 cells shown to lack Cx43 were used to examine if RG protected human islet cells via Cx43 coupling. To study the mechanisms of action of Cx43-independent effects of RG, NO, IkBα degradation, mitochondrial activity, ROS, and insulin mRNA levels were determined. RESULTS: RG reduced cytokine-induced apoptosis ~40% in human islets. In Cx43-deficient INS-1 cells, this protective effect was markedly blunted as expected, but unexpectedly, RG still modestly reduced apoptosis, and improved mitochondrial function, insulin-2 gene levels, and accumulated insulin release. RG reduced NO production in Cx43-deficient INS-1 cells associated with reduced iNOS expression, suggesting that RG blunts cytokine-induced NF-κB signaling in insulin-producing cells in a Cx43-independent manner. CONCLUSION: RG reduces cytokine-induced cell death in human islets. The protective action in Cx43-deficient INS-1 cells suggests a novel inhibitory mechanism of action of RG on NF-κB signaling.


Assuntos
Conexina 43/metabolismo , Citocinas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Oligopeptídeos/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores , Morte Celular/efeitos dos fármacos , Linhagem Celular , Conexina 43/genética , Citocinas/genética , Junções Comunicantes/metabolismo , Regulação da Expressão Gênica , Humanos , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico
3.
Annu Rev Nutr ; 36: 241-73, 2016 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-27146016

RESUMO

Dietary advice is the cornerstone in first-line treatment of metabolic diseases. Nutritional interventions directed at these clinical conditions mainly aim to (a) improve insulin resistance by reducing energy-dense macronutrient intake to obtain weight loss and (b) reduce fluctuations in insulin secretion through avoidance of rapidly absorbable carbohydrates. However, even in the majority of motivated patients selected for clinical trials, massive efforts using this approach have failed to achieve lasting efficacy. Less attention has been given to the role of micronutrients in metabolic diseases. Here, we review the evidence that highlights (a) the importance of iron in pancreatic beta-cell function and dysfunction in diabetes and (b) the integrative pathophysiological effects of tissue iron levels in the interactions among the beta cell, gut microbiome, hypothalamus, innate and adaptive immune systems, and insulin-sensitive tissues. We propose that clinical trials are warranted to clarify the impact of dietary or pharmacological iron reduction on the development of metabolic disorders.


Assuntos
Diabetes Mellitus/prevenção & controle , Medicina Baseada em Evidências , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Ferro da Dieta/uso terapêutico , Estresse Oxidativo , Imunidade Adaptativa , Animais , Apoptose , Diabetes Mellitus/etiologia , Diabetes Mellitus/imunologia , Diabetes Mellitus/metabolismo , Suplementos Nutricionais/efeitos adversos , Microbioma Gastrointestinal/imunologia , Homeostase , Humanos , Hipotálamo/imunologia , Hipotálamo/metabolismo , Imunidade Inata , Secreção de Insulina , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/patologia , Sobrecarga de Ferro/imunologia , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Sobrecarga de Ferro/fisiopatologia , Ferro da Dieta/efeitos adversos , Ferro da Dieta/metabolismo , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo
4.
J Endocr Soc ; 7(6): bvad057, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37200849

RESUMO

Context: Metabolic disorders such as obesity represent a major health challenge. Obesity alone has reached epidemic proportions, with at least 2.8 million people worldwide dying annually from diseases caused by overweight or obesity. The brain-metabolic axis is central to maintain homeostasis under metabolic stress via an intricate signaling network of hormones. Protein interacting with C kinase 1 (PICK1) is important for the biogenesis of various secretory vesicles, and we have previously shown that PICK1-deficient mice have impaired secretion of insulin and growth hormone. Objective: The aim was to investigate how global PICK1-deficient mice respond to high-fat diet (HFD) and assess its role in insulin secretion in diet-induced obesity. Methods: We characterized the metabolic phenotype through assessment of body weight, composition, glucose tolerance, islet morphology insulin secretion in vivo, and glucose-stimulated insulin secretion ex vivo. Results: PICK1-deficient mice displayed similar weight gain and body composition as wild-type (WT) mice following HFD. While HFD impaired glucose tolerance of WT mice, PICK1-deficient mice were resistant to further deterioration of their glucose tolerance compared with already glucose-impaired chow-fed PICK1-deficient mice. Surprisingly, mice with ß-cell-specific knockdown of PICK1 showed impaired glucose tolerance both on chow and HFD similar to WT mice. Conclusion: Our findings support the importance of PICK1 in overall hormone regulation. However, importantly, this effect is independent of the PICK1 expression in the ß-cell, whereby global PICK1-deficient mice resist further deterioration of their glucose tolerance following diet-induced obesity.

5.
J Mol Endocrinol ; 61(2): 69-77, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30030388

RESUMO

Type 2 diabetes (T2D) arises when the pancreatic beta-cell fails to compensate for increased insulin needs due to insulin resistance. Glucolipotoxicity (GLT) has been proposed to induce beta-cell dysfunction in T2D by formation of reactive oxygen species (ROS). Here, we examined if modeling glucolipotoxic conditions by high glucose-high free fatty acid (FFA) exposure (GLT) regulates beta-cell iron transport, by increasing the cytosolic labile iron pool (LIP). In isolated mouse islets, the GLT-induced increase in the LIP catalyzed cytosolic ROS formation and induced apoptosis. We show that GLT-induced ROS production is regulated by an increased LIP associated with elevated expression of genes regulating iron import. Using pharmacological and transgenic approaches, we show that iron reduction and decreased iron import protects from GLT-induced ROS production, prevents impairment of the mitochondrial membrane potential (MMP) and inhibits apoptosis. This study identifies a novel pathway underlying GLT-induced apoptosis involving increased iron import, generation of hydroxyl radicals from hydrogen peroxide through the Fenton reaction in the cytosolic compartment associated with dissipation of the MMP and beta-cell apoptosis.


Assuntos
Apoptose/fisiologia , Citosol/metabolismo , Células Secretoras de Insulina/metabolismo , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Transporte Biológico/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Camundongos
6.
Mol Cell Endocrinol ; 460: 47-56, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28684291

RESUMO

Transcriptional changes control ß-cell survival in response to inflammatory stress. Posttranslational modifications of histone and non-histone transcriptional regulators activate or repress gene transcription, but the link to cell-fate signaling is unclear. Inhibition of lysine deacetylases (KDACs) protects ß cells from cytokine-induced apoptosis and reduces type 1 diabetes incidence in animals. We hypothesized that also lysine demethylases (KDMs) regulate ß-cell fate in response to inflammatory stress. Expression of the demethylase Kdm6B was upregulated by proinflammatory cytokines suggesting a possible role in inflammation-induced ß-cell destruction. Inhibition of KDM6 demethylases using the selective inhibitor GSK-J4 protected insulin-producing cells and human and mouse islets from cytokine-induced apoptosis by blunting nuclear factor (NF)-κB signaling and endoplasmic reticulum (ER) stress response gene expression. GSK-J4 furthermore increased expression of insulin gene and glucose-stimulated insulin secretion. Expression of genes regulating purinergic and cytokine ligand-receptor interactions was downregulated following GSK-J4 exposure, while expression of genes involved in cell maintenance and survival was upregulated. These data suggest that KDMs are important regulators of inflammation-induced ß-cell dysfunction and death.


Assuntos
Apoptose , Benzazepinas/farmacologia , Citoproteção , Células Secretoras de Insulina/patologia , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Pirimidinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Citocinas/farmacologia , Citoproteção/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais
7.
J Med Chem ; 60(3): 886-898, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28045522

RESUMO

The G-protein-coupled receptor 39 (GPR39) is a G-protein-coupled receptor activated by Zn2+. We used a homology model-based approach to identify small-molecule pharmacological tool compounds for the receptor. The method focused on a putative binding site in GPR39 for synthetic ligands and knowledge of ligand binding to other receptors with similar binding pockets to select iterative series of minilibraries. These libraries were cherry-picked from all commercially available synthetic compounds. A total of only 520 compounds were tested in vitro, making this method broadly applicable for tool compound development. The compounds of the initial library were inactive when tested alone, but lead compounds were identified using Zn2+ as an allosteric enhancer. Highly selective, highly potent Zn2+-independent GPR39 agonists were found in subsequent minilibraries. These agonists identified GPR39 as a novel regulator of gastric somatostatin secretion.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Zinco/metabolismo , Regulação Alostérica , Descoberta de Drogas , Mucosa Gástrica/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Estrutura Molecular , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade
8.
Metabolism ; 64(2): 283-95, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25456456

RESUMO

OBJECTIVE: Follistatin-like 3 (fstl3), a natural inhibitor of members of the TGF-ß family, increases during resistance training in human plasma. Fstl3 primarily binds myostatin and activin A, and thereby inhibits their functions. We hypothesize that blocking myostatin and activin A signalling through systemic fstl3 over-expression protects against diet-induced obesity and insulin resistance. METHODS: Fstl3 was over-expressed by DNA electrotransfer in tibialis anterior, quadriceps and gastrocnemius muscles in female C57BL/C mice, and the mice were subsequently randomized to chow or high-fat feeding. Body weight, food intake, fat accumulation by MR scanning, and glucose, insulin and glucagon tolerance were evaluated, as was the response in body weight and metabolic parameters to 24h fasting. Effects of fstl3 on pancreatic insulin and glucagon content, and pancreatic islet morphology were determined. RESULTS: Fstl3 over-expression reduced fat accumulation during high-fat feeding by 16%, and liver fat by 50%, as determined by MRI. No changes in body weight were observed, while the weight of the transfected muscles increased by 10%. No transcriptional changes were found in the subcutaneous adipose tissue. Fstl3 mice displayed improved insulin sensitivity and muscle insulin signalling. In contrast, glucose tolerance was impaired in high-fat fed fstl3 mice, which was explained by increased hepatic glucagon sensitivity and glucose output, as well as a decrease in the pancreatic insulin/glucagon ratio. Accordingly, fstl3 transfection improved counter-regulation to 24h fasting. CONCLUSION: Fstl3 over-expression regulates insulin and glucagon sensitivities through increased muscular insulin action, as well as increased hepatic glucagon sensitivity and pancreatic glucagon content.


Assuntos
Adiposidade , Resistência à Insulina , Músculo Esquelético/metabolismo , Proteínas/metabolismo , Transdução de Sinais , Gordura Subcutânea/metabolismo , Regulação para Cima , Ativinas/antagonistas & inibidores , Ativinas/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Proteínas Relacionadas à Folistatina , Glucagon/metabolismo , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Intolerância à Glucose/prevenção & controle , Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/crescimento & desenvolvimento , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/patologia , Miostatina/antagonistas & inibidores , Miostatina/metabolismo , Proteínas/genética , Distribuição Aleatória , Proteínas Recombinantes/metabolismo , Gordura Subcutânea/crescimento & desenvolvimento , Gordura Subcutânea/patologia
9.
PLoS One ; 10(7): e0132910, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26168159

RESUMO

BACKGROUND: Plasma levels of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) are elevated in obesity and obesity-related disorders, such as steatosis, but the metabolic role of TIMP-1 is unclear. Here we investigated how the presence or absence of TIMP-1 affected the development of diet-induced glucose intolerance and hepatic steatosis using the Timp1 null mice. METHODS: Timp1 knockout (TKO) and wild type (TWT) mice were fed chow, high-fat diet (HFD) or intermediate fat and sucrose diet (IFSD). We determined body weight, body composition, lipid content of the liver, energy intake, energy expenditure, oral glucose tolerance, as well as insulin tolerance. In addition, the histology of liver and adipose tissues was examined and expression of selected genes involved in lipid metabolism and inflammation in liver and adipose tissues was determined by RT-qPCR. RESULTS: TKO mice gained less weight and had lower energy efficiency than TWT mice when fed HFD, but not when fed chow or IFSD. Importantly, TKO mice were protected from development of HFD- as well as IFSD-induced glucose intolerance, hepatic steatosis, and altered expression of genes involved in hepatic lipid metabolism and inflammation. CONCLUSION: Collectively, our results indicate that TIMP-1 contributes to the development of diet-induced hepatic steatosis and glucose intolerance and may be a potential therapeutic target.


Assuntos
Dieta Hiperlipídica , Fígado Gorduroso/etiologia , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Animais , Fígado Gorduroso/metabolismo , Glucose/metabolismo , Camundongos , Camundongos Knockout , Aumento de Peso
10.
Diabetes ; 61(1): 145-54, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22043003

RESUMO

Inflammatory cytokines are involved in autoimmune diabetes: among the most prominent is interleukin (IL)-1ß. We postulated that blockade of IL-1ß would modulate the effects of anti-CD3 monoclonal antibody (mAb) in treating diabetes in NOD mice. To test this, we treated hyperglycemic NOD mice with F(ab')(2) fragments of anti-CD3 mAb with or without IL-1 receptor antagonist (IL-1RA), or anti-IL-1ß mAb. We studied the reversal of diabetes and effects of treatment on the immune system. Mice that received a combination of anti-CD3 mAb with IL-1RA showed a more rapid rate of remission of diabetes than mice treated with anti-CD3 mAb or IL-1RA alone. Combination-treated mice had increased IL-5, IL-4, and interferon (IFN)-γ levels in circulation. There were reduced pathogenic NOD-relevant V7 peptide-V7(+) T cells in the pancreatic lymph nodes. Their splenocytes secreted more IL-10, had increased arginase expression in macrophages and dendritic cells, and had delayed adoptive transfer of diabetes. After 1 month, there were increased concentrations of IgG1 isotype antibodies and reduced intrapancreatic expression of IFN-γ, IL-6, and IL-17 despite normal splenocyte cytokine secretion. These studies indicate that the combination of anti-CD3 mAb with IL-1RA is synergistic in reversal of diabetes through a combination of mechanisms. The combination causes persistent remission from islet inflammation.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Complexo CD3/imunologia , Diabetes Mellitus Tipo 1/terapia , Fenômenos do Sistema Imunitário/efeitos dos fármacos , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Interleucina-1/antagonistas & inibidores , Animais , Diabetes Mellitus Tipo 1/imunologia , Combinação de Medicamentos , Sinergismo Farmacológico , Feminino , Fenômenos do Sistema Imunitário/fisiologia , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Indução de Remissão/métodos
11.
Cell Metab ; 16(4): 449-61, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23000401

RESUMO

Reactive oxygen species (ROS) contribute to target-cell damage in inflammatory and iron-overload diseases. Little is known about iron transport regulation during inflammatory attack. Through a combination of in vitro and in vivo studies, we show that the proinflammatory cytokine IL-1ß induces divalent metal transporter 1 (DMT1) expression correlating with increased ß cell iron content and ROS production. Iron chelation and siRNA and genetic knockdown of DMT1 expression reduce cytokine-induced ROS formation and cell death. Glucose-stimulated insulin secretion in the absence of cytokines in Dmt1 knockout islets is defective, highlighting a physiological role of iron and ROS in the regulation of insulin secretion. Dmt1 knockout mice are protected against multiple low-dose streptozotocin and high-fat diet-induced glucose intolerance, models of type 1 and type 2 diabetes, respectively. Thus, ß cells become prone to ROS-mediated inflammatory damage via aberrant cellular iron metabolism, a finding with potential general cellular implications.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Transporte de Cátions/metabolismo , Células Secretoras de Insulina/metabolismo , Interleucina-1beta/farmacologia , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Proteínas de Transporte de Cátions/antagonistas & inibidores , Proteínas de Transporte de Cátions/genética , Diabetes Mellitus Experimental , Dieta Hiperlipídica , Intolerância à Glucose , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/citologia , Camundongos , Camundongos Knockout , Modelos Biológicos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transativadores/genética , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA