Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Differentiation ; 123: 18-29, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34902770

RESUMO

Valproic acid (VPA) is a commonly prescribed antiepileptic drug that causes fetal valproate syndrome (FVS) in developing embryos exposed to it. Symptoms of FVS include neural tube defects (NTDs), musculoskeletal abnormalities, and neurodevelopmental difficulties. One proposed mechanism of VPA-induced developmental toxicity is via oxidative stress, defined as the disruption of redox-sensitive cell signaling. We propose that redox imbalances caused by VPA exposure result in improper cellular differentiation that may contribute to FVS. In undifferentiated P19 mouse embryonal carcinoma cells treated with VPA, glutathione disulfide (GSSG) concentrations were higher and the glutathione (GSH)/GSSG redox potential (Eh) was more oxidizing compared to vehicle-treated control cells, both of which are indications of potential intracellular oxidative stress. Interestingly, VPA had no effect on GSH or GSSG levels in differentiated P19 neurons. Undifferentiated cells pretreated with 3H-1,2-dithiole-3-thione (D3T), an inducer of the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant response that combats cellular redox disruption, were protected from VPA-induced alterations to the GSH/GSSG system. To assess differential periods of susceptibility, P19 cells were exposed to VPA at various time points during their neuronal differentiation. Cells exposed to VPA early in the differentiation process did not undergo normal neurogenesis as measured by POU domain, class 5, transcription factor 1 (OCT4) and tubulin beta-3 chain (ßIII-tubulin), markers of cell stemness and neuronal differentiation, respectively. Neurogenesis was improved with D3T pretreatments prior to VPA exposure. Furthermore, differentiating P19 cells treated with VPA exhibited increased protein oxidation that was diminished with D3T pretreatment. These findings demonstrate that VPA inhibits neurogenesis and propose NRF2-mediated redox homeostasis as a means to promote normal neuronal differentiation, thereby potentially decreasing the prevalence of FVS outcomes.


Assuntos
Fator 2 Relacionado a NF-E2 , Ácido Valproico , Anormalidades Induzidas por Medicamentos , Animais , Glutationa/metabolismo , Dissulfeto de Glutationa , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neurogênese , Tubulina (Proteína) , Ácido Valproico/efeitos adversos , Ácido Valproico/toxicidade
2.
Semin Cell Dev Biol ; 80: 17-28, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28927759

RESUMO

Vertebrate embryonic development requires specific signaling events that regulate cell proliferation and differentiation to occur at the correct place and the correct time in order to build a healthy embryo. Signaling pathways are sensitive to perturbations of the endogenous redox state, and are also susceptible to modulation by reactive species and antioxidant defenses, contributing to a spectrum of passive vs. active effects that can affect redox signaling and redox stress. Here we take a multi-level, integrative approach to discuss the importance of redox status for vertebrate developmental signaling pathways and cell fate decisions, with a focus on glutathione/glutathione disulfide, thioredoxin, and cysteine/cystine redox potentials and the implications for protein function in development. We present a tissue-specific example of the important role that reactive species play in pancreatic development and metabolic regulation. We discuss NFE2L2 (also known as NRF2) and related proteins, their roles in redox signaling, and their regulation of glutathione during development. Finally, we provide examples of xenobiotic compounds that disrupt redox signaling in the context of vertebrate embryonic development. Collectively, this review provides a systems-level perspective on the innate and inducible antioxidant defenses, as well as their roles in maintaining redox balance during chemical exposures that occur in critical windows of development.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Desenvolvimento Embrionário/fisiologia , Organogênese/fisiologia , Oxirredução , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo
3.
Dev Dyn ; 248(10): 979-996, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31390103

RESUMO

BACKGROUND: Circulating plasma ceramides, a class of bioactive sphingolipids, are elevated in metabolic disorders, including obesity. Infants of women with these disorders are at 2- to 3-fold greater risk for developing a neural tube defect (NTD). This study aimed to test the effects of embryonic exposure to C2-ceramides (C2) during neural tube closure. Preliminary data shows an increase in NTDs in chick embryos after C2 exposure, and addresses potential mechanisms. RESULTS: Cell and embryo models were used to examine redox shifts after ceramide exposure. While undifferentiated P19 cells were resistant to ceramide exposure, neuronally differentiated P19 cells exhibited an oxidizing shift. Consistent with these observations, GSH E h curves revealed a shift to a more oxidized state in C2 treated embryos without increasing apoptosis or changing Pax3 expression, however cell proliferation was lower. Neural tube defects were observed in 45% of chick embryos exposed to C2, compared to 12% in control embryos. CONCLUSIONS: C2 exposure during critical developmental stages increased the frequency of NTDs in the avian model. Increased ROS generation in cell culture, along with the more oxidative GSH E h profiles of C2 exposed cells and embryos, support a model wherein ceramide affects neural tube closure via altered tissue redox environments.


Assuntos
Ceramidas/farmacologia , Defeitos do Tubo Neural/induzido quimicamente , Esfingosina/análogos & derivados , Animais , Linhagem Celular , Embrião de Galinha , Glutationa , Camundongos , Neurulação , Oxirredução , Estresse Oxidativo , Fator de Transcrição PAX3/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Esfingosina/farmacologia
4.
Am J Physiol Endocrinol Metab ; 316(5): E922-E930, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30888858

RESUMO

Doxorubicin (DOX) is an effective chemotherapeutic treatment with lasting side effects in heart and skeletal muscle. DOX is known to bind with iron, contributing to oxidative damage resulting in cardiac and skeletal muscle toxicity. However, major cellular changes to iron regulation in response to DOX are poorly understood in liver, heart, and skeletal muscle. Additionally, two cotreatments, exercise (EX) and metformin (MET), were studied for their effectiveness in reducing DOX toxicity by ameliorating iron dysregulation and preventing oxidative stress. The purposes of this study were to 1) characterize the DOX-induced changes of the major iron regulation pathway in liver, heart, and skeletal muscle and 2) to determine whether EX and MET exert their benefits by minimizing DOX-induced iron dysregulation. Mice were assigned to receive saline or DOX (15 mg/kg) treatments, paired with either EX (5 days) or MET (500 mg/kg), and were euthanized 3 days after DOX treatment. Results suggest that the cellular response to DOX is protective against oxidative stress by reducing iron availability. DOX increased iron storage capacity through elevated ferritin levels in liver, heart, and skeletal muscle. DOX reduced iron transport capacity through reduced transferrin receptor levels in heart and skeletal muscle. EX and MET cotreatments had protective effects in the liver through reduced transferrin receptor levels. At 3 days after DOX, oxidative stress was mild, as shown by normal glutathione and lipid peroxidation levels. Together these results suggest that the cellular response to reduce iron availability in response to DOX treatment is sufficient to match oxidative stress.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Hipoglicemiantes/farmacologia , Ferro/metabolismo , Metformina/farmacologia , Condicionamento Físico Animal , Animais , Glutationa/efeitos dos fármacos , Glutationa/metabolismo , Coração/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Receptores da Transferrina/efeitos dos fármacos , Receptores da Transferrina/metabolismo
5.
Clin Gastroenterol Hepatol ; 16(10): 1667-1669, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29374615

RESUMO

Eosinophilic esophagitis (EoE) is a chronic condition characterized by eosinophilic-predominant inflammation and esophageal dysfunction.1,2 EoE represents a rapidly increasing cause of morbidity and a growing health problem.


Assuntos
Esofagite Eosinofílica/diagnóstico , Esofagite Eosinofílica/patologia , Tempo para o Tratamento , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , North Carolina , Estudos Retrospectivos , Adulto Jovem
6.
Cell Biol Int ; 42(7): 849-858, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29457665

RESUMO

CRISPR-Cas technology has revolutionized genome engineering. While Cas9 was not the first programmable endonuclease identified, its simplicity of use has driven widespread adoption in a short period of time. While CRISPR-Cas genome editing holds enormous potential for clinical applications, its use in laboratory settings for genotype-phenotype studies and genome-wide screens has led to breakthroughs in the understanding of many molecular pathways. Numerous protocols have been described for introducing CRISPR-Cas components into cells, and here we sought to simplify and optimize a protocol for genome editing using readily available and inexpensive tools. We compared plasmid, ribonucleoprotein (RNP), and RNA transfection to determine which was method was most optimal for editing cells in a laboratory setting. We limited our comparison to lipofection-mediated introduction because the reagents are widely available. To facilitate optimization, we developed a novel reporter assay to measure gene disruption and the introduction of a variety of exogenous DNA tags. Each method efficiently disrupted endogenous genes and was able to stimulate the introduction of foreign DNA at specific sites, albeit to varying efficiencies. RNP transfection produced the highest level of gene disruption and was the most rapid and efficient method overall. Finally, we show that very short homology arms of 30 base pairs can mediate site-specific editing. The methods described here should broaden the accessibility of RNP-mediated lipofection for laboratory genome-editing experiments.


Assuntos
Sistemas CRISPR-Cas , DNA/genética , Edição de Genes , Lipídeos , Edição de Genes/métodos , Genoma/genética , Humanos
7.
Am J Physiol Lung Cell Mol Physiol ; 312(5): L688-L702, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213469

RESUMO

Cystic fibrosis-related diabetes is the most common comorbidity associated with cystic fibrosis (CF) and correlates with increased rates of lung function decline. Because glucose is a nutrient present in the airways of patients with bacterial airway infections and because insulin controls glucose metabolism, the effect of insulin on CF airway epithelia was investigated to determine the role of insulin receptors and glucose transport in regulating glucose availability in the airway. The response to insulin by human airway epithelial cells was characterized by quantitative PCR, immunoblot, immunofluorescence, and glucose uptake assays. Phosphatidylinositol 3-kinase/protein kinase B (Akt) signaling and cystic fibrosis transmembrane conductance regulator (CFTR) activity were analyzed by pharmacological and immunoblot assays. We found that normal human primary airway epithelial cells expressed glucose transporter 4 and that application of insulin stimulated cytochalasin B-inhibitable glucose uptake, consistent with a requirement for glucose transporter translocation. Application of insulin to normal primary human airway epithelial cells promoted airway barrier function as demonstrated by increased transepithelial electrical resistance and decreased paracellular flux of small molecules. This provides the first demonstration that airway cells express insulin-regulated glucose transporters that act in concert with tight junctions to form an airway glucose barrier. However, insulin failed to increase glucose uptake or decrease paracellular flux of small molecules in human airway epithelia expressing F508del-CFTR. Insulin stimulation of Akt1 and Akt2 signaling in CF airway cells was diminished compared with that observed in airway cells expressing wild-type CFTR. These results indicate that the airway glucose barrier is regulated by insulin and is dysfunctional in CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Insulina/metabolismo , Pulmão/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Líquido da Lavagem Broncoalveolar , Linhagem Celular Transformada , Polaridade Celular , Ativação Enzimática , Células Epiteliais/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Células HEK293 , Humanos , Imuno-Histoquímica , Camundongos , Modelos Biológicos , Receptor de Insulina/metabolismo
8.
Pediatr Res ; 82(2): 362-369, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28288146

RESUMO

BackgroundThe intracellular redox potential of the glutathione (GSH)/glutathione disulfide (GSSG) couple regulates cellular processes. In vitro studies indicate that a reduced GSH/GSSG redox potential favors proliferation, whereas a more oxidized redox potential favors differentiation. Intestinal growth depends upon an appropriate balance between the two. However, how the ontogeny of intestinal epithelial cellular (IEC) GSH/GSSG redox regulates these processes in the developing intestine has not been fully characterized in vivo.MethodsOntogeny of intestinal GSH redox potential and growth were measured in neonatal mice.ResultsWe show that IEC GSH/GSSG redox potential becomes increasingly reduced (primarily driven by increased GSH concentration) over the first 3 weeks of life. Increased intracellular GSH has been shown to drive proliferation through increased poly-ADP-ribose polymerase (PARP) activity. We show that increasing IEC poly-ADP-ribose chains can be measured over the first 3 weeks of life, indicating an increase in IEC PARP activity. These changes are accompanied by increased intestinal growth and IEC proliferation as assessed by villus height/crypt depth, intestinal length, and Ki67 staining.ConclusionUnderstanding how IEC GSH/GSSG redox potential is developmentally regulated may provide insight into how premature human intestinal redox states can be manipulated to optimize intestinal growth and adaptation.


Assuntos
Glutationa/metabolismo , Mucosa Intestinal/metabolismo , Animais , Proliferação de Células , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/metabolismo , Intestinos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Poli Adenosina Difosfato Ribose/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Biochim Biophys Acta ; 1850(8): 1527-42, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25526700

RESUMO

BACKGROUND: Glutathione (GSH) is a ubiquitous, non-protein biothiol in cells. It plays a variety of roles in detoxification, redox regulation and cellular signaling. Many processes that can be regulated through GSH are critical to developing systems and include cellular proliferation, differentiation and apoptosis. Understanding how GSH functions in these aspects can provide insight into how GSH regulates development and how during periods of GSH imbalance how these processes are perturbed to cause malformation, behavioral deficits or embryonic death. SCOPE OF REVIEW: Here, we review the GSH system as it relates to events critical for normal embryonic development and differentiation. MAJOR CONCLUSIONS: This review demonstrates the roles of GSH extend beyond its role as an antioxidant but rather GSH acts as a mediator of numerous processes through its ability to undergo reversible oxidation with cysteine residues in various protein targets. Shifts in GSH redox potential cause an increase in S-glutathionylation of proteins to change their activity. As such, redox potential shifts can act to modify protein function on a possible longer term basis. A broad group of targets such as kinases, phosphatases and transcription factors, all critical to developmental signaling, is discussed. GENERAL SIGNIFICANCE: Glutathione regulation of redox-sensitive events is an overlying theme during embryonic development and cellular differentiation. Various stresses can change GSH redox states, we strive to determine developmental stages of redox sensitivity where insults may have the most impactful damaging effect. In turn, this will allow for better therapeutic interventions and preservation of normal developmental signaling. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.


Assuntos
Apoptose/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células , Desenvolvimento Embrionário/fisiologia , Glutationa/metabolismo , Animais , Humanos , Modelos Biológicos , Oxirredução , Fatores de Transcrição/metabolismo
12.
Am J Physiol Lung Cell Mol Physiol ; 308(9): L943-52, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25713321

RESUMO

Amiloride-sensitive epithelial Na(+) channels (ENaC) regulate fluid balance in the alveoli and are regulated by oxidative stress. Since glutathione (GSH) is the predominant antioxidant in the lungs, we proposed that changes in glutathione redox potential (Eh) would alter cell signaling and have an effect on ENaC open probability (Po). In the present study, we used single channel patch-clamp recordings to examine the effect of oxidative stress, via direct application of glutathione disulfide (GSSG), on ENaC activity. We found a linear decrease in ENaC activity as the GSH/GSSG Eh became less negative (n = 21; P < 0.05). Treatment of 400 µM GSSG to the cell bath significantly decreased ENaC Po from 0.39 ± 0.06 to 0.13 ± 0.05 (n = 8; P < 0.05). Likewise, back-filling recording electrodes with 400 µM GSSG reduced ENaC Po from 0.32 ± 0.08 to 0.17 ± 0.05 (n = 10; P < 0.05), thus implicating GSSG as an important regulatory factor. Biochemical assays indicated that oxidizing potentials promote S-glutathionylation of ENaC and irreversible oxidation of cysteine residues with N-ethylmaleimide blocked the effects of GSSG on ENaC Po. Additionally, real-time imaging studies showed that GSSG impairs alveolar fluid clearance in vivo as opposed to GSH, which did not impair clearance. Taken together, these data show that glutathione Eh is an important determinant of alveolar fluid clearance in vivo.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Dissulfeto de Glutationa/metabolismo , Alvéolos Pulmonares/metabolismo , Mucosa Respiratória/metabolismo , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Antioxidantes/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Bloqueadores do Canal de Sódio Epitelial , Feminino , Peróxido de Hidrogênio/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Estresse Oxidativo , Técnicas de Patch-Clamp , Alvéolos Pulmonares/citologia , Ratos , Ratos Sprague-Dawley
13.
Am J Physiol Lung Cell Mol Physiol ; 306(1): L43-9, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24097557

RESUMO

Cystic fibrosis-related diabetes (CFRD) is the most common comorbidity associated with cystic fibrosis (CF), impacting more than half of patients over age 30. CFRD is clinically significant, portending accelerated decline in lung function, more frequent pulmonary exacerbations, and increased mortality. Despite the profound morbidity associated with CFRD, little is known about the underlying CFRD-related pulmonary pathology. Our aim was to develop a murine model of CFRD to explore the hypothesis that elevated glucose in CFRD is associated with reduced lung bacterial clearance. A diabetic phenotype was induced in gut-corrected CF transmembrane conductance regulator (CFTR) knockout mice (CFKO) and their CFTR-expressing wild-type littermates (WT) utilizing streptozotocin. Mice were subsequently challenged with an intratracheal inoculation of Pseudomonas aeruginosa (PAO1) (75 µl of 1-5 × 10(6) cfu/ml) for 18 h. Bronchoalveolar lavage fluid was collected for glucose concentration and cell counts. A portion of the lung was homogenized and cultured as a measure of the remaining viable PAO1 inoculum. Diabetic mice had increased airway glucose compared with nondiabetic mice. The ability to clear bacteria from the lung was significantly reduced in diabetic WT mice and control CFKO mice. Critically, bacterial clearance by diabetic CFKO mice was significantly more diminished compared with nondiabetic CFKO mice, despite an even more robust recruitment of neutrophils to the airways. This finding that CFRD mice boast an exaggerated, but less effective, inflammatory cell response to intratracheal PAO1 challenge presents a novel and useful murine model to help identify therapeutic strategies that promote bacterial clearance in CFRD.


Assuntos
Fibrose Cística/complicações , Diabetes Mellitus Experimental/complicações , Hiperglicemia/complicações , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/imunologia , Animais , Carga Bacteriana , Líquido da Lavagem Broncoalveolar , Fibrose Cística/imunologia , Fibrose Cística/microbiologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/microbiologia , Modelos Animais de Doenças , Feminino , Humanos , Hiperglicemia/imunologia , Hiperglicemia/microbiologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CFTR , Camundongos Knockout , Pneumonia Bacteriana/imunologia , Infecções por Pseudomonas/imunologia , Técnicas de Cultura de Tecidos
14.
Proc Natl Acad Sci U S A ; 108(21): 8803-8, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21555563

RESUMO

The mechanisms by which enteric commensal microbiota influence maturation and repair of the epithelial barrier are relatively unknown. Epithelial restitution requires active cell migration, a process dependent on dynamic turnover of focal cell-matrix adhesions (FAs). Here, we demonstrate that natural, commensal bacteria stimulate generation of reactive oxygen species (ROS) in intestinal epithelia. Bacteria-mediated ROS generation induces oxidation of target cysteines in the redox-sensitive tyrosine phosphatases, LMW-PTP and SHP-2, which in turn results in increased phosphorylation of focal adhesion kinase (FAK), a key protein regulating the turnover of FAs. Accordingly, phosphorylation of FAK substrate proteins, focal adhesion formation, and cell migration are all significantly enhanced by bacterial contact in both in vitro and in vivo models of wound closure. These results suggest that commensal bacteria regulate cell migration via induced generation of ROS in epithelial cells.


Assuntos
Enterobacteriaceae/metabolismo , Células Epiteliais/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Movimento Celular , Adesões Focais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monoéster Fosfórico Hidrolases , Cicatrização
15.
Antioxidants (Basel) ; 13(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38790665

RESUMO

Valproic acid (VPA) is a common anti-epileptic drug and known neurodevelopmental toxicant. Although the exact mechanism of VPA toxicity remains unknown, recent findings show that VPA disrupts redox signaling in undifferentiated cells but has little effect on fully differentiated neurons. Redox imbalances often alter oxidative post-translational protein modifications and could affect embryogenesis if developmentally critical proteins are targeted. We hypothesize that VPA causes redox-sensitive post-translational protein modifications that are dependent upon cellular differentiation states. Undifferentiated P19 cells and P19-derived neurons were treated with VPA alone or pretreated with D3T, an inducer of the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant pathway, prior to VPA exposure. Undifferentiated cells treated with VPA alone exhibited an oxidized glutathione redox couple and increased overall protein oxidation, whereas differentiated neurons were protected from protein oxidation via increased S-glutathionylation. Pretreatment with D3T prevented the effects of VPA exposure in undifferentiated cells. Taken together, our findings support redox-sensitive post-translational protein alterations in undifferentiated cells as a mechanism of VPA-induced developmental toxicity and propose NRF2 activation as a means to preserve proper neurogenesis.

16.
Am J Physiol Gastrointest Liver Physiol ; 304(10): G885-96, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23494124

RESUMO

Inflammatory bowel disease is associated with increased reactive oxygen species (ROS) and decreased antioxidant response in the intestinal mucosa. Expression of the mitochondrial protein prohibitin (PHB) is also decreased during intestinal inflammation. Our previous study showed that genetic restoration of colonic epithelial PHB expression [villin-PHB transgenic (PHB Tg) mice] attenuated dextran sodium sulfate (DSS)-induced colitis/oxidative stress and sustained expression of colonic nuclear factor erythroid 2-related factor 2 (Nrf2), a cytoprotective transcription factor. This study investigated the role of Nrf2 in mediating PHB-induced protection against colitis and expression of the antioxidant response element (ARE)-regulated antioxidant genes heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase-1 (NQO-1). PHB-transfected Caco-2-BBE human intestinal epithelial cells maintained increased ARE activation and decreased intracellular ROS levels compared with control vector-transfected cells during Nrf2 knockdown by small interfering RNA. Treatment with the ERK inhibitor PD-98059 decreased PHB-induced ARE activation, suggesting that ERK constitutes a significant portion of PHB-mediated ARE activation in Caco-2-BBE cells. PHB Tg, Nrf2(-/-), and PHB Tg/Nrf2(-/-) mice were treated with DSS or 2,4,6-trinitrobenzene sulfonic acid (TNBS), and inflammation and expression of HO-1 and NQO-1 were assessed. PHB Tg/Nrf2(-/-) mice mimicked PHB Tg mice, with attenuated DSS- or TNBS-induced colitis and induction of colonic HO-1 and NQO-1 expression, despite deletion of Nrf2. PHB Tg/Nrf2(-/-) mice exhibited increased activation of ERK during colitis. Our results suggest that maintaining expression of intestinal epithelial cell PHB, which is decreased during colitis, reduces the severity of inflammation and increases colonic levels of the antioxidants HO-1 and NQO-1 via a mechanism independent of Nrf2.


Assuntos
Colite/genética , Colite/prevenção & controle , Subunidade p45 do Fator de Transcrição NF-E2/fisiologia , Proteínas Repressoras/fisiologia , Animais , Elementos de Resposta Antioxidante/fisiologia , Western Blotting , Células CACO-2 , Linhagem Celular , Colite/induzido quimicamente , Sulfato de Dextrana , Genes Reporter , Heme Oxigenase-1/metabolismo , Humanos , Luciferases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NAD(P)H Desidrogenase (Quinona)/metabolismo , Subunidade p45 do Fator de Transcrição NF-E2/genética , Peroxidase/metabolismo , Proibitinas , RNA/genética , RNA/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
17.
Biol Open ; 12(1)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36537579

RESUMO

The mammalian superior colliculus and its non-mammalian homolog, the optic tectum (OT), are midbrain structures that integrate multimodal sensory inputs and guide non-voluntary movements in response to prevalent stimuli. Recent studies have implicated this structure as a possible site affected in autism spectrum disorder (ASD). Interestingly, fetal exposure to valproic acid (VPA) has also been associated with an increased risk of ASD in humans and animal models. Therefore, we took the approach of determining the effects of VPA treatment on zebrafish OT development as a first step in identifying the mechanisms that allow its formation. We describe normal OT development during the first 5 days of development and show that in VPA-treated embryos, neuronal specification and neuropil formation was delayed. VPA treatment was most detrimental during the first 3 days of development and did not appear to be linked to oxidative stress. In conclusion, our work provides a foundation for research into mechanisms driving OT development, as well as the relationship between the OT, VPA, and ASD. This article has an associated First Person interview with one of the co-first authors of the paper.


Assuntos
Transtorno do Espectro Autista , Ácido Valproico , Humanos , Animais , Ácido Valproico/efeitos adversos , Peixe-Zebra , Colículos Superiores , Neurogênese , Mamíferos
18.
Biochim Biophys Acta Gen Subj ; 1867(5): 130321, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36870547

RESUMO

BACKGROUND: Glutathione (GSH) is the most abundant, small biothiol antioxidant. GSH redox state (Eh) supports developmental processes, yet with disrupted GSH Eh, poor developmental outcomes may occur. The role of subcellular, compartmentalized redox environments in the context of redox regulation of differentiation is not well understood. Here, using the P19 neurogenesis model of cellular differentiation, kinetics of subcellular H2O2 availability and GSH Eh were evaluated following oxidant exposure. METHODS: Stably transfected P19 cell lines expressing H2O2 availability or GSH Eh sensors, Orp1-roGFP or Grx1-roGFP, respectively, targeted to the cytosol, mitochondria, or nucleus were used. Dynamic, compartmentalized changes in H2O2 availability and GSH Eh were measured via spectrophotometric and confocal microscopy over 120 min following treatment with H2O2 (100 µM) in both differentiated and undifferentiated cells. RESULTS: Generally, treated undifferentiated cells showed a greater degree and duration of both H2O2 availability and GSH Eh disruption than differentiated neurons. In treated undifferentiated cells, H2O2 availability was similar in all compartments. Interestingly, in treated undifferentiated cells, mitochondrial GSH Eh was most affected in both the initial oxidation and the rebound kinetics compared to other compartments. Pretreatment with an Nrf2 inducer prevented H2O2-induced effects in all compartments of undifferentiated cells. CONCLUSIONS: Disruption of redox-sensitive developmental pathways is likely stage specific, where cells that are less differentiated and/or are actively differentiating are most affected. GENERAL SIGNIFICANCE: Undifferentiated cells are more susceptible to oxidant-induced redox dysregulation but are protected by chemicals that induce Nrf2. This may preserve developmental programs and diminish the potential for poor developmental outcomes.


Assuntos
Peróxido de Hidrogênio , Fator 2 Relacionado a NF-E2 , Peróxido de Hidrogênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Glutationa/metabolismo , Oxirredução , Oxidantes , Diferenciação Celular
19.
Nutrients ; 15(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37892529

RESUMO

Yerba maté, a herbal tea derived from Ilex paraguariensis, has previously been reported to be protective against obesity-related and other cardiometabolic disorders. Using high-resolution respirometry and reverse-phase high-performance liquid chromatography, the effects of four weeks of yerba maté consumption on mitochondrial efficiency and cellular redox status in skeletal muscle, adipose, and liver, tissues highly relevant to whole-body metabolism, were explored in healthy adult mice. Yerba maté treatment increased the mitochondrial oxygen consumption in adipose but not in the other examined tissues. Yerba maté increased the ATP concentration in skeletal muscle and decreased the ATP concentration in adipose. Combined with the observed changes in oxygen consumption, these data yielded a significantly higher ATP:O2, a measure of mitochondrial efficiency, in muscle and a significantly lower ATP:O2 in adipose, which was consistent with yerba maté-induced weight loss. Yerba maté treatment also altered the hepatic glutathione (GSH)/glutathione disulfide (GSSG) redox potential to a more reduced redox state, suggesting the treatment's potential protective effects against oxidative stress and for the preservation of cellular function. Together, these data indicate the beneficial, tissue-specific effects of yerba maté supplementation on mitochondrial bioenergetics and redox states in healthy mice that are protective against obesity.


Assuntos
Ilex paraguariensis , Camundongos , Animais , Ilex paraguariensis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Obesidade/metabolismo , Suplementos Nutricionais , Músculo Esquelético/metabolismo , Oxirredução , Trifosfato de Adenosina/metabolismo
20.
Antioxidants (Basel) ; 12(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37507924

RESUMO

Necrotizing enterocolitis (NEC) is a neonatal intestinal disease associated with oxidative stress. The targets of peroxidation and the role of the innate intestinal epithelial antioxidant defense system are ill-defined. We hypothesized that oxidative stress in NEC correlates with oxidized GSH redox potentials, lipid peroxidation, and a dysfunctional antioxidant system. Methods: Intestinal samples from infants +/- NEC were generated into enteroids and incubated with lipopolysaccharide (LPS) and hypoxia to induce experimental NEC. HPLC assayed GSH redox potentials. Lipid peroxidation was measured by flow cytometry. Immunoblotting measured glutathione peroxidase 4 (Gpx4) expression. Results: GSH redox potentials were more oxidized in NEC intestinal tissue and enteroids as compared to controls. Lipid radicals in NEC-induced enteroids were significantly increased. Human intestinal tissue with active NEC and treated enteroid cultures revealed decreased levels of Gpx4. Conclusions: The ability of neonatal intestine to mitigate radical accumulation plays a role in its capacity to overcome oxidative stress. Accumulation of lipid radicals is confirmed after treatment of enteroids with NEC-triggering stimuli. Decreased Gpx4 diminishes a cell's ability to effectively neutralize lipid radicals. When lipid peroxidation overwhelms antioxidant machinery, cellular death ensues. Identification of the mechanisms behind GSH-dependent enzyme dysfunction in NEC may provide insights into strategies for reversing radical damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA