Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38647309

RESUMO

Hydrogen clathrate hydrates are ice-like crystalline substances in which hydrogen molecules are trapped inside polyhedral cages formed by the water molecules. Small cages can host only a single H2 molecule, while each large cage can be occupied by up to four H2 molecules. Here, we present a neutron scattering study on the structure of the sII hydrogen clathrate hydrate and on the low-temperature dynamics of the hydrogen molecules trapped in its large cages, as a function of the gas content in the samples. We observe spectral features at low energy transfer (between 1 and 3 meV), and we show that they can be successfully assigned to the rattling motion of a single hydrogen molecule occupying a large water cage. These inelastic bands remarkably lose their intensity with increasing the hydrogen filling, consistently with the fact that the probability of single occupation (as opposed to multiple occupation) increases as the hydrogen content in the sample gets lower. The spectral intensity of the H2 rattling bands is studied as a function of the momentum transfer for partially emptied samples and compared with three distinct quantum models for a single H2 molecule in a large cage: (i) the exact solution of the Schrödinger equation for a well-assessed semiempirical force field, (ii) a particle trapped in a rigid sphere, and (iii) an isotropic three-dimensional harmonic oscillator. The first model provides good agreement between calculations and experimental data, while the last two only reproduce their qualitative trend. Finally, the radial wavefunctions of the three aforementioned models, as well as their potential surfaces, are presented and discussed.

2.
Inorg Chem ; 61(44): 17673-17681, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36270053

RESUMO

The atomic and magnetic structures of Mn(Co,Ge)2 are reported herein. The system crystallizes in the space group P63/mmc as a superstructure of the MgZn2-type structure. The system exhibits two magnetic transitions with associated magnetic structures, a ferromagnetic (FM) structure around room temperature, and an incommensurate structure at lower temperatures. The FM structure, occurring between 193 and 329 K, is found to be a member of the magnetic space group P63/mm'c'. The incommensurate structure found below 193 K is helical with propagation vector k = (0 0 0.0483). Crystallographic results are corroborated by magnetic measurements and ab initio calculations.

3.
Proc Natl Acad Sci U S A ; 116(41): 20280-20285, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548383

RESUMO

Using X-ray emission spectroscopy, we find appreciable local magnetic moments until 30 GPa to 40 GPa in the high-pressure phase of iron; however, no magnetic order is detected with neutron powder diffraction down to 1.8 K, contrary to previous predictions. Our first-principles calculations reveal a "spin-smectic" state lower in energy than previous results. This state forms antiferromagnetic bilayers separated by null spin bilayers, which allows a complete relaxation of the inherent frustration of antiferromagnetism on a hexagonal close-packed lattice. The magnetic bilayers are likely orientationally disordered, owing to the soft interlayer excitations and the near-degeneracy with other smectic phases. This possible lack of long-range correlation agrees with the null results from neutron powder diffraction. An orientationally disordered, spin-smectic state resolves previously perceived contradictions in high-pressure iron and could be integral to explaining its puzzling superconductivity.

4.
Nat Mater ; 19(6): 663-668, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32015533

RESUMO

Amongst the more than 18 different forms of water ice, only the common hexagonal phase and the cubic phase are present in nature on Earth. Nonetheless, it is now widely recognized that all samples of 'cubic ice' discovered so far do not have a fully cubic crystal structure but instead are stacking-disordered forms of ice I (namely, ice Isd), which contain both hexagonal and cubic stacking sequences of hydrogen-bonded water molecules. Here, we describe a method to obtain large quantities of cubic ice Ic with high structural purity. Cubic ice Ic is formed by heating a powder of D2O ice XVII obtained from annealing of pristine C0 hydrate samples under dynamic vacuum. Neutron diffraction experiments performed on two different instruments and Raman spectroscopy measurements confirm the structural purity of the cubic ice, Ic. These findings contribute to a better understanding of ice I polymorphism and the existence of the two natural ice forms.

5.
Nature ; 516(7530): 231-3, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25503235

RESUMO

Gas hydrates are ice-like solids, in which guest molecules or atoms are trapped inside cages formed within a crystalline host framework (clathrate) of hydrogen-bonded water molecules. They are naturally present in large quantities on the deep ocean floor and as permafrost, can form in and block gas pipelines, and are thought to occur widely on Earth and beyond. A natural point of reference for this large and ubiquitous family of inclusion compounds is the empty hydrate lattice, which is usually regarded as experimentally inaccessible because the guest species stabilize the host framework. However, it has been suggested that sufficiently small guests may be removed to leave behind metastable empty clathrates, and guest-free Si- and Ge-clathrates have indeed been obtained. Here we show that this strategy can also be applied to water-based clathrates: five days of continuous vacuum pumping on small particles of neon hydrate (of structure sII) removes all guests, allowing us to determine the crystal structure, thermal expansivity and limit of metastability of the empty hydrate. It is the seventeenth experimentally established crystalline ice phase, ice XVI according to the current ice nomenclature, has a density of 0.81 grams per cubic centimetre (making it the least dense of all known crystalline water phases) and is expected to be the stable low-temperature phase of water at negative pressures (that is, under tension). We find that the empty hydrate structure exhibits negative thermal expansion below about 55 kelvin, and that it is mechanically more stable and has at low temperatures larger lattice constants than the filled hydrate. These observations attest to the importance of kinetic effects and host-guest interactions in clathrate hydrates, with further characterization of the empty hydrate expected to improve our understanding of the structure, properties and behaviour of these unique materials.

6.
Proc Natl Acad Sci U S A ; 114(22): E4354-E4359, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28507123

RESUMO

In iron-based superconductors, high critical temperature (Tc) superconductivity over 50 K has only been accomplished in electron-doped hREFeAsO (hRE is heavy rare earth (RE) element). Although hREFeAsO has the highest bulk Tc (58 K), progress in understanding its physical properties has been relatively slow due to difficulties in achieving high-concentration electron doping and carrying out neutron experiments. Here, we present a systematic neutron powder diffraction study of 154SmFeAsO1-x D x , and the discovery of a long-range antiferromagnetic ordering with x ≥ 0.56 (AFM2) accompanying a structural transition from tetragonal to orthorhombic. Surprisingly, the Fe magnetic moment in AFM2 reaches a magnitude of 2.73 µB/Fe, which is the largest in all nondoped iron pnictides and chalcogenides. Theoretical calculations suggest that the AFM2 phase originates in kinetic frustration of the Fe-3dxy orbital, in which the nearest-neighbor hopping parameter becomes zero. The unique phase diagram, i.e., highest-Tc superconducting phase adjacent to the strongly correlated phase in electron-overdoped regime, yields important clues to the unconventional origins of superconductivity.

7.
Angew Chem Int Ed Engl ; 59(45): 19910-19913, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33462989

RESUMO

The seminal qualitative concepts of chemical bonding, as presented by Walter Kossel and Gilbert Newton Lewis back in 1916, have lasting general validity. These basic rules of chemical valence still serve as a touchstone for validating the plausibility of composition and constitution of a given chemical compound. We report on Ag7Pt2O7, with a composition that violates the basic rules of chemical valence and an exotic crystal structure. The first coordination sphere of platinum is characteristic of tetravalent platinum. Thus, the electron count corresponds to Ag7Pt2O7*e-, where excess electrons are associated with the silver substructure. Such conditions given, it is commonly assumed that the excess electrons are either itinerant or localized in Ag-Ag bonds. However, the material does not show metallic conductivity, nor does the structure feature Ag-Ag pairs. Instead, the excess electrons organize themselves in 2e-4c bonds within the silver substructure. This subvalent silver oxide reveals a new general facet pertinent to silver chemistry.

8.
Phys Chem Chem Phys ; 21(27): 14671-14677, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31215923

RESUMO

Deuterated ice XVII, a metastable solid water polymorph, was filled with Ne and O2 at p ≈ 100 kPa and studied by in situ neutron diffraction (ILL, France). Powder patterns were collected in the ranges of 20-50 K (Ne) and 4.6-90 K (O2). Rietveld refinement and difference Fourier techniques showed that the gas molecules were located inside the hexagonal channels of the host ice. Both Ne atoms and O2 molecules are arranged in a spiral-like configuration off the channel axis, preserving the P6122 symmetry of the host in the case of Ne, but reducing it to P61 in O2. A larger Ne absorption compared to Ne-filled ice II is observed, which is consistent with longer host-guest contacts producing smaller hydrophobic repulsion. In O2-filled ice XVII, instead, short O-D distances (2.37 Å) have attractive character and stabilize the structure.

9.
Inorg Chem ; 57(4): 1702-1704, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29373788

RESUMO

The crystal and magnetic structure of SmCo5 is determined by neutron powder diffraction between 5 K and the Curie temperature. In order to overcome the enormous neutron absorption of samarium, a 154Sm isotopically enriched sample was used. The ordered magnetic moments of both crystallographically distinct cobalt atoms are not significantly different over the whole temperature range. They decrease from 2.2 µB at 5 K to about 0.6 µB at 1029 K. Samarium's ordered magnetic moment decreases from 1.0 µB at 5 K, runs through a minimum of 0.2 µB around 650 K, and becomes larger than cobalt's ordered magnetic moment above 950 K. No sign or orientation change of the samarium and cobalt ordered magnetic moments is found between the Curie temperature and 5 K. SmCo5 is thus a ferromagnet and does not switch to a ferrimagnetic state as discussed in the literature.

10.
Inorg Chem ; 56(24): 15006-15014, 2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29166003

RESUMO

The hydrogenation properties of Laves phases LnMg2 (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Ho, Er, Tm, Yb) were investigated by thermal analysis, X-ray, synchrotron, and neutron powder diffraction. At 14.0 MPa hydrogen gas pressure and 393 K, PrMg2 and NdMg2 take up hydrogen and form the colorless, ternary hydrides PrMg2H7 (P41212, a = 632.386(6) pm, c = 945.722(11) pm) and NdMg2H7 (P41212, a = 630.354(9) pm, c = 943.018(16) pm). The crystal structures were refined by the Rietveld method from neutron powder diffraction data on the deuterides (PrMg2D7, P41212, a = 630.56(2) pm, c = 943.27(3) pm; NdMg2D7, P41212, a = 628.15(2) pm, c = 940.32(3) pm) and shown to be isotypic to LaMg2D7. The LaMg2D7 type of hydrides decompose at 695 K (La), 684 K (Ce), 684 K (Pr), 672 K (Nd), and 639 K (Sm) to lanthanide hydrides and magnesium. The Laves phase EuMg2 forms a hydride EuMg2Hx of black color. Its crystal structure (P212121, a = 664.887(4) pm, b = 1136.993(7) pm, c = 1069.887(7) pm) is closely related to the hexagonal Laves phase (MgZn2 type) of the hydrogen-free parent intermetallic. GdMg2 and TbMg2 form hydrides GdMg2Hx with orthorhombic unit cells (a = 1282.7(4) pm, b = 572.5(2) pm, c = 881.7(2) pm) and TbMg2Hx (a = 617.8(3) pm, b = 1045.8(8) pm, c = 997.1(5) pm), presumably also with a distorted MgZn2 type of structure. CeMg2H7 and NdMg2H7 are paramagnetic with effective magnetic moments of 2.49(1) µB and 3.62(1) µB, respectively, in good agreement with the calculated magnetic moments of the free trivalent rare-earth cations (µcalc(Ce3+) = 2.54 µB; µcalc(Nd3+) = 3.62 µB).

11.
Inorg Chem ; 56(11): 6318-6329, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28481108

RESUMO

We prepared trirutile-type polycrystalline samples of CuTa2O6 by low-temperature decomposition of a Cu-Ta-oxalate precursor. Diffraction studies at room temperature identified a slight monoclinic distortion of the hitherto surmised tetragonal trirutile crystal structure. Detailed high-temperature X-ray and neutron powder diffraction investigations as well as Raman scattering spectroscopy revealed a structural phase transition at 503(3) K from the monoclinic structure to the tetragonal trirutile structure. GGA+U density functional calculations of the spin-exchange parameters as well as magnetic susceptibility and isothermal magnetization measurements reveal that CuTa2O6 is a new 1D Heisenberg magnet with predominant anti-ferromagnetic nearest-neighbor intrachain spin-exchange interaction of ∼50 K. Interchain exchange is a factor of ∼5 smaller. Heat capacity and low-temperature high-intensity neutron powder diffraction studies could not detect long-range order down to 0.45 K.

12.
Inorg Chem ; 56(1): 594-607, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27977159

RESUMO

The structure of the mineral schafarzikite, FeSb2O4, has one-dimensional channels with walls comprising Sb3+ cations; the channels are separated by edge-linked FeO6 octahedra that form infinite chains parallel to the channels. Although this structure provides interest with respect to the magnetic and electrical properties associated with the chains and the possibility of chemistry that could occur within the channels, materials in this structural class have received very little attention. Here we show, for the first time, that heating selected phases in oxygen-rich atmospheres can result in relatively large oxygen uptakes (up to ∼2% by mass) at low temperatures (ca. 350 °C) while retaining the parent structure. Using a variety of structural and spectroscopic techniques, it is shown that oxygen is inserted into the channels to provide a structure with the potential to show high one-dimensional oxide ion conductivity. This is the first report of oxygen-excess phases derived from this structure. The oxygen insertion is accompanied not only by oxidation of Fe2+ to Fe3+ within the octahedral chains but also Sb3+ to Sb5+ in the channel walls. The formation of a defect cluster comprising one 5-coordinate Sb5+ ion (which is very rare in an oxide environment), two interstitial O2- ions, and two 4-coordinate Sb3+ ions is suggested and is consistent with all experimental observations. To the best of our knowledge, this is the first example of an oxidation process where the local energetics of the product dictate that simultaneous oxidation of two different cations must occur. This reaction, together with a wide range of cation substitutions that are possible on the transition metal sites, presents opportunities to explore the schafarzikite structure more extensively for a range of catalytic and electrocatalytic applications.

13.
Proc Natl Acad Sci U S A ; 109(52): 21259-64, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23236184

RESUMO

A solid water phase commonly known as "cubic ice" or "ice I(c)" is frequently encountered in various transitions between the solid, liquid, and gaseous phases of the water substance. It may form, e.g., by water freezing or vapor deposition in the Earth's atmosphere or in extraterrestrial environments, and plays a central role in various cryopreservation techniques; its formation is observed over a wide temperature range from about 120 K up to the melting point of ice. There was multiple and compelling evidence in the past that this phase is not truly cubic but composed of disordered cubic and hexagonal stacking sequences. The complexity of the stacking disorder, however, appears to have been largely overlooked in most of the literature. By analyzing neutron diffraction data with our stacking-disorder model, we show that correlations between next-nearest layers are clearly developed, leading to marked deviations from a simple random stacking in almost all investigated cases. We follow the evolution of the stacking disorder as a function of time and temperature at conditions relevant to atmospheric processes; a continuous transformation toward normal hexagonal ice is observed. We establish a quantitative link between the crystallite size established by diffraction and electron microscopic images of the material; the crystallite size evolves from several nanometers into the micrometer range with progressive annealing. The crystallites are isometric with markedly rough surfaces parallel to the stacking direction, which has implications for atmospheric sciences.

14.
Phys Chem Chem Phys ; 16(40): 22116-21, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25209023

RESUMO

An exact description of the interactions in aromatic carbon systems is a key condition for the design of carbon based nanomaterials. In this paper we investigate the binding and adsorbate structure of the simplest prototype system in this class - the single aromatic ring molecule benzene on graphite. We have collected neutron diffraction data of the ordered phase of deuterated benzene, C6D6, adsorbed on the graphite (0001) basal plane surface. We examined relative coverages from 0.15 up to 1.3 monolayers (ML) in a temperature range of 80 to 250 K. The results confirm the flat lying commensurate (√7 × âˆš7)R19.1° monolayer with lattice constants a = b = 6.5 Å at coverages of less than 1 ML. For this structure we observe a progressive melting well below the desorption temperature. At higher coverages we do neither observe an ordered second layer nor a densification of the structure by upright tilting of first layer molecules, as generally assumed up to now. Instead, we see the formation of clusters with a bulk crystalline structure for coverages only weakly exceeding 1 ML.

15.
J Chem Phys ; 141(3): 034201, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25053313

RESUMO

The leaching of Al from intermetallic samples of Nickel Aluminium alloys to form Raney-type nickel catalysts is widely used in the hydrogenation industry, however, little is known of the leaching process itself. In this study, the leaching of Al was measured in realtime, in situ, using the high-flux powder neutron diffractometer, D20, at the Institut Laue-Langevin. Despite the liberation of hydrogen and effervescent nature of the reaction the transformation of the dry powder phases into Raney-type Ni was determined. Samples produced by gas-atomisation were found to leach faster than those produced using the cast and crushed technique. Regardless of processing route of the precursor powder, the formation of spongy-Ni occurs almost immediately, while Ni2Al3 and NiAl3 continue to transform over longer periods of time. Small-angle scattering and broadening of the diffraction peaks is an evidence for the formation of the smaller Ni particles. Understanding the kinetics of the leaching process will allow industry to refine production of catalysts for optimum manufacturing time while knowledge of leaching dynamics of powders produced by different manufacturing techniques will allow further tailoring of catalytic materials.

16.
Phys Chem Chem Phys ; 15(29): 12139-46, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23674125

RESUMO

LiH is a highly stable light metal hydride with a hydrogen capacity of 12.5 wt%. However, having a dehydrogenation enthalpy, ΔH(dehy), of 181.2 kJ mol(-1)(H2) and a resultant T(1 bar) of 944 °C, it is not a practical hydride for most hydrogen storage applications. In the work presented here, germanium has been found to dramatically reduce the dehydrogenation temperature for LiH down to just 270 °C. The enthalpy of dehydrogenation was reduced through the formation of lithium germanides. The reaction pathway was identified in this study using in situ powder neutron diffraction, showing the successive formation of more Li-rich germanides, following the series: LiGe, Li4Ge2H, Li9Ge4, and Li7Ge2. The enthalpy of formation for these germanides provides the thermodynamic tuning to reduce the ΔH(dehy) for the system. The 3LiH-Ge system investigated is found to be reversible with a maximum capacity of 3.0 ± 0.1 wt%.

17.
J Phys Condens Matter ; 35(46)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37557891

RESUMO

Neutron diffraction in combination with isotopic substitution on the zero-scatterer62Ni4363Cu57shows indications for chemical short-range order in the stable liquid as evidenced by oscillations in the concentration-concentration structure factorSCC(q). This points towards a non-ideal solution behavior of Ni-Cu contrary to common believe but in agreement with measurements of free enthalpy of mixing. The temperature dependence ofSCCat small momentum transfer provides evidence of critical compositional fluctuations in Ni43Cu57melts.

18.
ACS Appl Mater Interfaces ; 15(19): 23040-23050, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37040557

RESUMO

Reversible exsolution and dissolution of metal nanoparticles (NPs) in complex oxides have been investigated as an efficient strategy to improve the performance and durability of the catalysts for thermal and electrochemical energy conversion. Here, in situ exsolution of Co-Fe alloy NPs from the layered perovskite PrBaFeCoO5+δ (PBFC) and their dissolution back into the oxide host have been monitored for the first time by in situ neutron powder diffraction and confirmed by X-ray diffraction and electron microscopy. Catalytic tests for dry reforming of methane showed stable operation over ∼100 h at 800 °C with negligible carbon deposition (<0.3 mg/gcat h). The CO2 and CH4 conversions are among the highest achieved by layered double perovskites. The cyclability of the PBFC catalyst and the potential to improve the catalytic activity by adjusting the composition, size, and the NP distribution would pave the way for highly efficient energy conversion applications.

19.
JACS Au ; 3(2): 429-440, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36873706

RESUMO

A comprehensive understanding of the ligand field and its influence on the degeneracy and population of d-orbitals in a specific coordination environment are crucial for the rational design and enhancement of magnetic anisotropy of single-ion magnets (SIMs). Herein, we report the synthesis and comprehensive magnetic characterization of a highly anisotropic CoII SIM, [L2Co](TBA)2 (L is an N,N'-chelating oxanilido ligand), that is stable under ambient conditions. Dynamic magnetization measurements show that this SIM exhibits a large energy barrier to spin reversal U eff > 300 K and magnetic blocking up to 3.5 K, and the property is retained in a frozen solution. Low-temperature single-crystal synchrotron X-ray diffraction used to determine the experimental electron density gave access to Co d-orbital populations and a derived U eff, 261 cm-1, when the coupling between the d x 2 - y 2 and dxy orbitals is taken into account, in very good agreement with ab initio calculations and superconducting quantum interference device results. Powder and single-crystal polarized neutron diffraction (PNPD, PND) have been used to quantify the magnetic anisotropy via the atomic susceptibility tensor, revealing that the easy axis of magnetization is pointing along the N-Co-N' bisectors of the N,N'-chelating ligands (3.4° offset), close to the molecular axis, in good agreement with complete active space self-consistent field/N-electron valence perturbation theory to second order ab initio calculations. This study provides benchmarking for two methods, PNPD and single-crystal PND, on the same 3d SIM, and key benchmarking for current theoretical methods to determine local magnetic anisotropy parameters.

20.
Inorg Chem ; 51(3): 1269-77, 2012 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-22272558

RESUMO

The novel oxide defect fluorite phase ScTiO(3.5) is formed during the topotactic oxidation of ScTiO(3) bixbyite. We report the oxidation pathway of ScTiO(3) and structure evolution of ScTiO(3.5), Sc(4)Ti(3)O(12), and related scandium-deficient phases as well as high-temperature phase transitions between room temperature and 1300 °Cusing in-situ X-ray diffraction. We provide the first detailed powder neutron diffraction study for ScTiO(3). ScTiO(3) crystallizes in the cubic bixbyite structure in space group Ia3 (206) with a = 9.7099(4) Å. The topotactic oxidation product ScTiO(3.5) crystallizes in an oxide defect fluorite structure in space group Fm3m (225) with a = 4.89199(5) Å. Thermogravimetric and differential thermal analysis experiments combined with in-situ X-ray powder diffraction studies illustrate a complex sequence of a topotactic oxidation pathway, phase segregation, and ion ordering at high temperatures. The optimized bulk synthesis for phase pure ScTiO(3.5) is presented. In contrast to the vanadium-based defect fluorite phases AVO(3.5+x) (A = Sc, In) the novel titanium analogue ScTiO(3.5) is stable over a wide temperature range. Above 950 °C ScTiO(3.5) undergoes decomposition with the final products being Sc(4)Ti(3)O(12) and TiO(2). Simultaneous Rietveld refinements against powder X-ray and neutron diffraction data showed that Sc(4)Ti(3)O(12) also exists in the defect fluorite structure in space group Fm3m (225) with a = 4.90077(4) Å. Sc(4)Ti(3)O(12) undergoes partial reduction in CO/Ar atmosphere to form Sc(4)Ti(3)O(11.69(2)).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA