Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Alzheimers Dement ; 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39369294

RESUMO

INTRODUCTION: Growing evidence suggests a role for neuroinflammation in Alzheimer's disease (AD). We investigated complement pathway activity in AD patient cerebrospinal fluid (CSF) and evaluated its modulation by the anti-tau antibody semorinemab. METHODS: Immunoassays were applied to measure CSF complement proteins C4, factor B (FB), C3 and their cleavage fragments C4a, C3a, and factor Bb (Bb) in AD patients and a separate cognitively unimpaired (CU) cohort. RESULTS: All measured CSF complement proteins were increased in AD versus CU subjects, with C4a displaying the most robust increase. Finally, semorinemab did not have a significant pharmacodynamic effect on CSF complement proteins. DISCUSSION: Elevated levels of CSF C4a, C4, C3a, C3, Bb, and FB are consistent with complement activation in AD brains. Despite showing a reduction in CSF soluble tau species, semorinemab did not impact complement protein levels or activity. Further studies are needed to determine the value of complement proteins as neuroinflammation biomarkers in AD. HIGHLIGHTS: Cerebrospinal fluid (CSF) complement proteins C4a, C3a, Bb, C4, C3, and factor B levels were increased in Alzheimer's disease (AD) patients compared to a separate cognitively unimpaired (CU) cohort. Baseline CSF complement protein levels were correlated with neuro-axonal degeneration and glial activation biomarkers in AD patients. The investigational anti-tau antibody semorinemab did not impact CSF complement protein levels or activity relative to the placebo arm.

2.
J Neurosci ; 40(5): 958-973, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31831521

RESUMO

Cortical circuit activity is shaped by the parvalbumin (PV) and somatostatin (SST) interneurons that inhibit principal excitatory (EXC) neurons and the vasoactive intestinal peptide (VIP) interneurons that suppress activation of other interneurons. To understand the molecular-genetic basis of functional specialization and identify potential drug targets specific to each neuron subtype, we performed a genome wide assessment of both gene expression and splicing across EXC, PV, SST and VIP neurons from male and female mouse brains. These results reveal numerous examples where neuron subtype-specific gene expression, as well as splice-isoform usage, can explain functional differences between neuron subtypes, including in presynaptic plasticity, postsynaptic receptor function, and synaptic connectivity specification. We provide a searchable web resource for exploring differential mRNA expression and splice form usage between excitatory, PV, SST, and VIP neurons (http://research-pub.gene.com/NeuronSubtypeTranscriptomes). This resource, combining a unique new dataset and novel application of analysis methods to multiple relevant datasets, identifies numerous potential drug targets for manipulating circuit function, reveals neuron subtype-specific roles for disease-linked genes, and is useful for understanding gene expression changes observed in human patient brains.SIGNIFICANCE STATEMENT Understanding the basis of functional specialization of neuron subtypes and identifying drug targets for manipulating circuit function requires comprehensive information on cell-type-specific transcriptional profiles. We sorted excitatory neurons and key inhibitory neuron subtypes from mouse brains and assessed differential mRNA expression. We used a genome-wide analysis which not only examined differential gene expression levels but could also detect differences in splice isoform usage. This analysis reveals numerous examples of neuron subtype-specific isoform usage with functional importance, identifies potential drug targets, and provides insight into the neuron subtypes involved in psychiatric disease. We also apply our analysis to two other relevant datasets for comparison, and provide a searchable website for convenient access to the resource.


Assuntos
Córtex Cerebral/metabolismo , Interneurônios/metabolismo , Neurônios/metabolismo , Transcriptoma , Animais , Células Cultivadas , Feminino , Hipocampo/metabolismo , Masculino , Camundongos Transgênicos , Parvalbuminas/metabolismo , RNA Mensageiro/metabolismo , Somatostatina/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
3.
J Neurosci ; 34(24): 8277-88, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24920631

RESUMO

Extensive evidence implicates GluN2B-containing NMDA receptors (GluN2B-NMDARs) in excitotoxic-insult-induced neurodegeneration and amyloid ß (Aß)-induced synaptic dysfunction. Therefore, inhibiting GluN2B-NMDARs would appear to be a potential therapeutic strategy to provide neuroprotection and improve cognitive function in Alzheimer's disease (AD). However, there are no reports of long-term in vivo treatment of AD mouse models with GluN2B antagonists. We used piperidine18 (Pip18), a potent and selective GluN2B-NMDAR antagonist with favorable pharmacokinetic properties, for long-term dosing in AD mouse models. Reduced freezing behavior in Tg2576 mice during fear conditioning was partially reversed after subchronic (17 d) Pip18 treatment. However, analysis of freezing behavior in different contexts indicated that this increased freezing likely involves elevated anxiety or excessive memory generalization in both nontransgenic (NTG) and Tg2576 mice. In PS2APP mice chronically fed with medicated food containing Pip18 for 4 months, spatial learning and memory deficits were not rescued, plaque-associated spine loss was not affected, and synaptic function was not altered. At the same time, altered open field activity consistent with increased anxiety and degraded performance in an active avoidance task were observed in NTG after chronic treatment. These results indicate that long-term treatment with a GluN2B-NMDAR antagonist does not provide a disease-modifying benefit and could cause cognitive liabilities rather than symptomatic benefit in AD mouse models. Therefore, these results challenge the expectation of the therapeutic potential for GluN2B-NMDAR antagonists in AD.


Assuntos
Doença de Alzheimer/complicações , Transtornos de Deficit da Atenção e do Comportamento Disruptivo/induzido quimicamente , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Sinapses/patologia , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Técnicas In Vitro , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Piperidinas/farmacologia
4.
Neurobiol Dis ; 74: 254-62, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25484285

RESUMO

GluN2B subunit containing NMDARs (GluN2B-NMDARs) mediate pathophysiological effects of acutely applied amyloid beta (Aß), including impaired long-term potentiation (LTP). However, in transgenic Alzheimer's disease (AD) mouse models which feature gradual Aß accumulation, the function of GluN2B-NMDARs and their contribution to synaptic plasticity are unknown. Therefore, we examined the role of GluN2B-NMDARs in synaptic function and plasticity in the hippocampus of PS2APP transgenic mice. Although LTP induced by theta burst stimulation (TBS) was normal in PS2APP mice, it was significantly reduced by the selective GluN2B-NMDAR antagonist Ro25-6981 (Ro25) in PS2APP mice, but not wild type (wt) mice. While NMDARs activated by single synaptic stimuli were not blocked by Ro25, NMDARs recruited during burst stimulation showed larger blockade by Ro25 in PS2APP mice. Thus, the unusual dependence of LTP on GluN2B-NMDARs in PS2APP mice suggests that non-synaptic GluN2B-NMDARs are activated by glutamate that spills out of synaptic cleft during the burst stimulation used to induce LTP. While long-term depression (LTD) was normal in PS2APP mice, and Ro25 had no impact on LTD in wt mice, Ro25 impaired LTD in PS2APP mice, again demonstrating aberrant GluN2B-NMDAR function during plasticity. Together these results demonstrate altered GluN2B-NMDAR function in a model of early AD pathology that has implications for the therapeutic targeting of NMDARs in AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Hipocampo/fisiopatologia , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Doença de Alzheimer/patologia , Animais , Western Blotting , Modelos Animais de Doenças , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/ultraestrutura , Potenciação de Longa Duração/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Microscopia Eletrônica de Transmissão , Fenóis/farmacologia , Piperidinas/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Técnicas de Cultura de Tecidos
5.
J Neurosci ; 33(14): 5924-9, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23554474

RESUMO

Histone deacetylase 2 (HDAC2) negatively regulates excitatory synapse number and memory performance. However, whether HDAC2 regulation of excitatory synapses occurs in a cell-autonomous manner and whether HDAC2 regulates inhibitory synaptic functions are not well understood. To examine these aspects of HDAC2 function, we used sparse transfection of rat hippocampal slice cultures and whole-cell recordings in pyramidal neurons. HDAC2 knockdown (KD) in single postsynaptic pyramidal neurons enhanced, whereas HDAC2 overexpression (OE) reduced, excitatory synaptic transmission. Postsynaptic KD of HDAC2 also facilitated expression of long-term potentiation induced by subthreshold induction stimuli, without altering long-term depression. In contrast, HDAC2 KD reduced, whereas HDAC2 OE enhanced, inhibitory synaptic transmission. Alterations of postsynaptic GABA(A) receptors (GABA(A)Rs) likely underlie the impact of HDAC2 on inhibitory transmission. Consistent with this, we observed reduced transcript and protein levels of the GABA(A)R γ2 subunit and reduced surface expression of the α2 subunit after HDAC2 KD. Furthermore, we observed a reduction in synaptic but not tonic GABA(A)R currents by HDAC2 KD, suggesting that HDAC2 selectively affects synaptic abundance of functional GABA(A)Rs. Immunostaining for postsynaptic GABA(A)Rs confirmed that HDAC2 KD and OE can regulate the synaptic abundance of these receptors. Together, these results highlight a role for HDAC2 in suppressing synaptic excitation and enhancing synaptic inhibition of hippocampal neurons. Therefore, a shift in the balance of synaptic excitation versus inhibition favoring excitation could contribute to the beneficial effects of reducing HDAC2 function in wild-type mice or of inhibiting HDACs in models of cognitive impairment.


Assuntos
Região CA1 Hipocampal/citologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Histona Desacetilase 2/metabolismo , Potenciais Pós-Sinápticos Inibidores/fisiologia , Animais , Animais Recém-Nascidos , Linhagem Celular Transformada , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/genética , Humanos , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Masculino , Neurônios , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Transfecção , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
6.
Nat Rev Drug Discov ; 23(1): 23-42, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38012296

RESUMO

Synapse dysfunction and loss are hallmarks of neurodegenerative diseases that correlate with cognitive decline. However, the mechanisms and therapeutic strategies to prevent or reverse synaptic damage remain elusive. In this Review, we discuss recent advances in understanding the molecular and cellular pathways that impair synapses in neurodegenerative diseases, including the effects of protein aggregation and neuroinflammation. We also highlight emerging therapeutic approaches that aim to restore synaptic function and integrity, such as enhancing synaptic plasticity, preventing synaptotoxicity, modulating neuronal network activity and targeting immune signalling. We discuss the preclinical and clinical evidence for each strategy, as well as the challenges and opportunities for developing effective synapse-targeting therapeutics for neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/tratamento farmacológico , Sinapses/metabolismo , Transdução de Sinais , Plasticidade Neuronal
7.
STAR Protoc ; 5(4): 103388, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39418161

RESUMO

Complement proteins contribute to neurodegeneration in Alzheimer's disease (AD) and are secreted by glia surrounding beta-amyloid (Aß) plaques. We present an optimized protocol for Aß plaque detection with tyramide-digoxigenin signal amplification. This is combined with a multiplex mRNA fluorescence in situ hybridization (FISH) panel to assay glial-specific complement expression proximal to Aß plaques in TauPS2APP mice. We describe steps for tissue preparation and mRNA detection. We then detail steps for the detection of Aß plaques, image acquisition, and analysis.

8.
EBioMedicine ; 102: 105045, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471394

RESUMO

BACKGROUND: Schizophrenia, a debilitating psychiatric disorder, displays considerable interindividual variation in clinical presentations. The ongoing debate revolves around whether this heterogeneity signifies a continuum of severity linked to a singular causative factor or a collection of distinct subtypes with unique origins. Within the realm of schizophrenia, the functional impairment of GluN2A, a subtype of the NMDA receptor, has been associated with an elevated risk. Despite GluN2A's expression across various neuronal types throughout the brain, its specific contributions to schizophrenia and its involvement in particular cell types or brain regions remain unexplored. METHODS: We generated age-specific, cell type-specific or brain region-specific conditional knockout mice targeting GluN2A and conducted a comprehensive analysis using tests measuring phenotypes relevant to schizophrenia. FINDINGS: Through the induction of germline ablation of GluN2A, we observed the emergence of numerous schizophrenia-associated abnormalities in adult mice. Intriguingly, GluN2A knockout performed at different ages, in specific cell types and within distinct brain regions, we observed overlapping yet distinct schizophrenia-related phenotypes in mice. INTERPRETATION: Our interpretation suggests that the dysfunction of GluN2A is sufficient to evoke heterogeneous manifestations associated with schizophrenia, indicating that GluN2A stands as a prominent risk factor and a potential therapeutic target for schizophrenia. FUNDING: This project received support from the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX02) awarded to Y.C. and the Natural Science Foundation of Shanghai (Grant No. 19ZR1468600 and 201409003800) awarded to G.Y.


Assuntos
Receptores de N-Metil-D-Aspartato , Esquizofrenia , Animais , Camundongos , Encéfalo/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo
9.
Neuropsychopharmacology ; 49(1): 51-66, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37369776

RESUMO

N-methyl-D-aspartate (NMDA) receptors mediate a slow component of excitatory synaptic transmission, are widely distributed throughout the central nervous system, and regulate synaptic plasticity. NMDA receptor modulators have long been considered as potential treatments for psychiatric disorders including depression and schizophrenia, neurodevelopmental disorders such as Rett Syndrome, and neurodegenerative conditions such as Alzheimer's disease. New interest in NMDA receptors as therapeutic targets has been spurred by the findings that certain inhibitors of NMDA receptors produce surprisingly rapid and robust antidepressant activity by a novel mechanism, the induction of changes in the brain that well outlast the presence of drug in the body. These findings are driving research into an entirely new paradigm for using NMDA receptor antagonists in a host of related conditions. At the same time positive allosteric modulators of NMDA receptors are being pursued for enhancing synaptic function in diseases that feature NMDA receptor hypofunction. While there is great promise, developing the therapeutic potential of NMDA receptor modulators must also navigate the potential significant risks posed by the use of such agents. We review here the emerging pharmacology of agents that target different NMDA receptor subtypes, offering new avenues for capturing the therapeutic potential of targeting this important receptor class.


Assuntos
Psiquiatria , Esquizofrenia , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Sistema Nervoso Central , Encéfalo/metabolismo
10.
Sci Transl Med ; 15(696): eade8728, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37196063

RESUMO

We highlight potential issues with a Western blot assay using mouse anti-caspase-1 antibody to detect cleaved caspase-1 p20 subunit in mouse brain tissue lysates.


Assuntos
Inflamassomos , Sinucleinopatias , Camundongos , Animais , alfa-Sinucleína
11.
Sci Transl Med ; 15(689): eadf0141, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989373

RESUMO

Complement overactivation mediates microglial synapse elimination in neurological diseases such as Alzheimer's disease (AD) and frontotemporal dementia (FTD), but how complement activity is regulated in the brain remains largely unknown. We identified that the secreted neuronal pentraxin Nptx2 binds complement C1q and thereby regulates its activity in the brain. Nptx2-deficient mice show increased complement activity, C1q-dependent microglial synapse engulfment, and loss of excitatory synapses. In a neuroinflammation culture model and in aged TauP301S mice, adeno-associated virus (AAV)-mediated neuronal overexpression of Nptx2 was sufficient to restrain complement activity and ameliorate microglia-mediated synapse loss. Analysis of human cerebrospinal fluid (CSF) samples from a genetic FTD cohort revealed reduced concentrations of Nptx2 and Nptx2-C1q protein complexes in symptomatic patients, which correlated with elevated C1q and activated C3. Together, these results show that Nptx2 regulates complement activity and microglial synapse elimination in the brain and that diminished Nptx2 concentrations might exacerbate complement-mediated neurodegeneration in patients with FTD.


Assuntos
Demência Frontotemporal , Microglia , Humanos , Camundongos , Animais , Idoso , Microglia/metabolismo , Complemento C1q/genética , Complemento C1q/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Sinapses/metabolismo , Proteínas do Sistema Complemento/metabolismo
12.
Elife ; 122023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37555828

RESUMO

Tumor progression locus 2 (TPL2) (MAP3K8) is a central signaling node in the inflammatory response of peripheral immune cells. We find that TPL2 kinase activity modulates microglial cytokine release and is required for microglia-mediated neuron death in vitro. In acute in vivo neuroinflammation settings, TPL2 kinase activity regulates microglia activation states and brain cytokine levels. In a tauopathy model of chronic neurodegeneration, loss of TPL2 kinase activity reduces neuroinflammation and rescues synapse loss, brain volume loss, and behavioral deficits. Single-cell RNA sequencing analysis indicates that protection in the tauopathy model was associated with reductions in activated microglia subpopulations as well as infiltrating peripheral immune cells. Overall, using various models, we find that TPL2 kinase activity can promote multiple harmful consequences of microglial activation in the brain including cytokine release, iNOS (inducible nitric oxide synthase) induction, astrocyte activation, and immune cell infiltration. Consequently, inhibiting TPL2 kinase activity could represent a potential therapeutic strategy in neurodegenerative conditions.


Assuntos
MAP Quinase Quinase Quinases , Tauopatias , Animais , Humanos , Camundongos , Encéfalo/patologia , Células Cultivadas , Espinhas Dendríticas/patologia , Lipopolissacarídeos , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Camundongos Knockout , Microglia/metabolismo , Doenças Neuroinflamatórias/patologia , Análise de Sequência de RNA , Análise de Célula Única , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/metabolismo , Tauopatias/patologia , Tauopatias/fisiopatologia
13.
Cell Rep ; 40(8): 111189, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36001972

RESUMO

Oligodendrocyte dysfunction has been implicated in the pathogenesis of neurodegenerative diseases, so understanding oligodendrocyte activation states would shed light on disease processes. We identify three distinct activation states of oligodendrocytes from single-cell RNA sequencing (RNA-seq) of mouse models of Alzheimer's disease (AD) and multiple sclerosis (MS): DA1 (disease-associated1, associated with immunogenic genes), DA2 (disease-associated2, associated with genes influencing survival), and IFN (associated with interferon response genes). Spatial analysis of disease-associated oligodendrocytes (DAOs) in the cuprizone model reveals that DA1 and DA2 are established outside of the lesion area during demyelination and that DA1 repopulates the lesion during remyelination. Independent meta-analysis of human single-nucleus RNA-seq datasets reveals that the transcriptional responses of MS oligodendrocytes share features with mouse models. In contrast, the oligodendrocyte activation signature observed in human AD is largely distinct from those observed in mice. This catalog of oligodendrocyte activation states (http://research-pub.gene.com/OligoLandscape/) will be important to understand disease progression and develop therapeutic interventions.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Doenças Neurodegenerativas , Animais , Cuprizona/uso terapêutico , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Oligodendroglia
14.
Nat Aging ; 2(9): 837-850, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-37118504

RESUMO

Microglia and complement can mediate neurodegeneration in Alzheimer's disease (AD). By integrative multi-omics analysis, here we show that astrocytic and microglial proteins are increased in TauP301S synapse fractions with age and in a C1q-dependent manner. In addition to microglia, we identified that astrocytes contribute substantially to synapse elimination in TauP301S hippocampi. Notably, we found relatively more excitatory synapse marker proteins in astrocytic lysosomes, whereas microglial lysosomes contained more inhibitory synapse material. C1q deletion reduced astrocyte-synapse association and decreased astrocytic and microglial synapses engulfment in TauP301S mice and rescued synapse density. Finally, in an AD mouse model that combines ß-amyloid and Tau pathologies, deletion of the AD risk gene Trem2 impaired microglial phagocytosis of synapses, whereas astrocytes engulfed more inhibitory synapses around plaques. Together, our data reveal that astrocytes contact and eliminate synapses in a C1q-dependent manner and thereby contribute to pathological synapse loss and that astrocytic phagocytosis can compensate for microglial dysfunction.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/genética , Complemento C1q/genética , Microglia/metabolismo , Astrócitos/metabolismo , Sinapses/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo
15.
J Neurosci ; 30(45): 15146-59, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21068320

RESUMO

The globus pallidus (GP) predominantly contains GABAergic projection neurons that occupy a central position in the indirect pathway of the basal ganglia. They have long dendrites that can extend through one-half the diameter of the GP in rats, potentially enabling convergence and interaction between segregated basal ganglia circuits. Because of the length and fine diameter of GP dendrites, however, it is unclear how much influence distal synapses have on spiking activity. Dendritic expression of fast voltage-dependent Na(+) channels (NaF channels) can enhance the importance of distal excitatory synapses by allowing for dendritic spike initiation and by subthreshold boosting of EPSPs. Antibody labeling has demonstrated the presence of NaF channel proteins in GP dendrites, but the quantitative expression density of the channels remains unknown. We built a series of nine GP neuron models that differed only in their dendritic NaF channel expression level to assess the functional impact of this parameter. The models were all similar in their basic electrophysiological features; however, higher expression levels of dendritic NaF channels increased the relative effectiveness of distal inputs for both excitatory and inhibitory synapses, broadening the effective extent of the dendritic tree. Higher dendritic NaF channel expression also made the neurons more resistant to tonic inhibition and highly sensitive to clustered synchronous excitation. The dendritic NaF channel expression pattern may therefore be a critical determinant of convergence for both the striatopallidal and subthalamopallidal projections, while also dictating which spatiotemporal input patterns are most effective at driving GP neuron output.


Assuntos
Dendritos/fisiologia , Globo Pálido/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Canais de Sódio/fisiologia , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Simulação por Computador , Eletrofisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
16.
J Physiol ; 588(Pt 11): 1929-46, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20351044

RESUMO

Many synapses undergo immediate and persistent activity-dependent changes in strength via processes that fall under the umbrella of synaptic plasticity. It is known that this type of synaptic plasticity exhibits an underlying state dependence; that is, as synapses change in strength they move into distinct 'states' that are defined by the mechanism and ability to undergo future plasticity. In this study, we have investigated the molecular mechanisms that underlie state-dependent synaptic plasticity. Using intracellular application of peptides that mimic the C-terminal tail sequences of GluR1 and GluR2 AMPA receptor subtypes, combined with paired recordings of minimal synaptic connections, we have shown that AMPA receptor subtypes present in the membrane at a given time confer some properties of plasticity states. These data show that during synaptic plasticity, AMPA receptor subtypes are differentially stabilized by postsynaptic density proteins in or out of the postsynaptic membrane, and this differential synaptic expression of different AMPA receptor subtypes defines distinct synaptic states.


Assuntos
Plasticidade Neuronal/fisiologia , Receptores de AMPA/fisiologia , Sinapses/fisiologia , Animais , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/fisiologia , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Células Cultivadas , Eletrofisiologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular , Microinjeções , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/efeitos dos fármacos , Neuropeptídeos/síntese química , Neuropeptídeos/farmacologia , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/biossíntese , Receptores de AMPA/efeitos dos fármacos , Receptores de AMPA/genética , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
17.
BMC Neurosci ; 11: 96, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20704756

RESUMO

BACKGROUND: Diverse Mouse genetic models of neurodevelopmental, neuropsychiatric, and neurodegenerative causes of impaired cognition exhibit at least four convergent points of synaptic malfunction: 1) Strength of long-term potentiation (LTP), 2) Strength of long-term depression (LTD), 3) Relative inhibition levels (Inhibition), and 4) Excitatory connectivity levels (Connectivity). RESULTS: To test the hypothesis that pathological increases or decreases in these synaptic properties could underlie imbalances at the level of basic neural network function, we explored each type of malfunction in a simulation of autoassociative memory. These network simulations revealed that one impact of impairments or excesses in each of these synaptic properties is to shift the trade-off between pattern separation and pattern completion performance during memory storage and recall. Each type of synaptic pathology either pushed the network balance towards intolerable error in pattern separation or intolerable error in pattern completion. Imbalances caused by pathological impairments or excesses in LTP, LTD, inhibition, or connectivity, could all be exacerbated, or rescued, by the simultaneous modulation of any of the other three synaptic properties. CONCLUSIONS: Because appropriate modulation of any of the synaptic properties could help re-balance network function, regardless of the origins of the imbalance, we propose a new strategy of personalized cognitive therapeutics guided by assay of pattern completion vs. pattern separation function. Simulated examples and testable predictions of this theorized approach to cognitive therapeutics are presented.


Assuntos
Transtornos Cognitivos/patologia , Transtornos Cognitivos/terapia , Redes Neurais de Computação , Fechamento Perceptivo/fisiologia , Medicina de Precisão , Sinapses/patologia , Animais , Transtornos Cognitivos/psicologia , Simulação por Computador , Bases de Dados Factuais , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Camundongos , Vias Neurais/patologia , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia
18.
Sci Rep ; 10(1): 10951, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616769

RESUMO

The N-terminal domain (NTD) of the GluN1 subunit (GluN1-NTD) is important for NMDA receptor structure and function, but the interacting proteins of the GluN1-NTD are not well understood. Starting with an unbiased screen of ~ 1,500 transmembrane proteins using the purified GluN1-NTD protein as a bait, we identify Protocadherin 7 (PCDH7) as a potential interacting protein. PCDH7 is highly expressed in the brain and has been linked to CNS disorders, including epilepsy. Using primary neurons and brain slice cultures, we find that overexpression and knockdown of PCDH7 induce opposing morphological changes of dendritic structures. We also find that PCDH7 overexpression reduces synaptic NMDA receptor currents. These data show that PCDH7 can regulate dendritic spine morphology and synaptic function, possibly via interaction with the GluN1 subunit.


Assuntos
Caderinas/metabolismo , Espinhas Dendríticas/fisiologia , Hipocampo/citologia , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica , Animais , Caderinas/genética , Feminino , Hipocampo/fisiologia , Neurônios/citologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Transdução de Sinais
19.
Sci Rep ; 10(1): 15713, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973290

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by motor neuron loss that ultimately leads to fatal paralysis. Reducing levels or function of the tyrosine kinase, ephrin type-A receptor 4 (EphA4), has been suggested as a potential approach for slowing disease progression in ALS. Because EphA4 plays roles in embryonic nervous system development, study of constitutive knockout (KO) of EphA4 in mice is limited due to confounding phenotypes with homozygous knockout. We used a tamoxifen-inducible EphA4 conditional KO mouse to achieve strong reduction of EphA4 levels in postnatal mice to test for protective effects in the SOD1G93A model of ALS. We found that EphA4 KO in young mice, but not older adult mice, causes defects in muscle function, consistent with a prolonged postnatal role for EphA4 in adolescent muscle growth. When testing the effects of inducible EphA4 KO at different timepoints in SOD1G93A mice, we found no benefits on motor function or disease pathology, including muscle denervation and motor neuron loss. Our results demonstrate deleterious effects of reducing EphA4 levels in juvenile mice and do not provide support for the hypothesis that widespread EphA4 reduction is beneficial in the SOD1G93A mouse model of ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Atividade Motora/genética , Neurônios Motores/patologia , Receptor EphA4/genética , Fatores Etários , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Camundongos , Camundongos Transgênicos , Superóxido Dismutase-1/genética
20.
Cell Rep ; 30(2): 381-396.e4, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31940483

RESUMO

NMDA receptors (NMDARs) play subunit-specific roles in synaptic function and are implicated in neuropsychiatric and neurodegenerative disorders. However, the in vivo consequences and therapeutic potential of pharmacologically enhancing NMDAR function via allosteric modulation are largely unknown. We examine the in vivo effects of GNE-0723, a positive allosteric modulator of GluN2A-subunit-containing NMDARs, on brain network and cognitive functions in mouse models of Dravet syndrome (DS) and Alzheimer's disease (AD). GNE-0723 use dependently potentiates synaptic NMDA receptor currents and reduces brain oscillation power with a predominant effect on low-frequency (12-20 Hz) oscillations. Interestingly, DS and AD mouse models display aberrant low-frequency oscillatory power that is tightly correlated with network hypersynchrony. GNE-0723 treatment reduces aberrant low-frequency oscillations and epileptiform discharges and improves cognitive functions in DS and AD mouse models. GluN2A-subunit-containing NMDAR enhancers may have therapeutic benefits in brain disorders with network hypersynchrony and cognitive impairments.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Ciclopropanos/farmacologia , Epilepsias Mioclônicas/tratamento farmacológico , Nitrilas/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Tiazóis/farmacologia , Regulação Alostérica/efeitos dos fármacos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Células CHO , Cricetulus , Modelos Animais de Doenças , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pirazóis/farmacologia , Receptores de N-Metil-D-Aspartato/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA