Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(19): 5847-5854, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700109

RESUMO

We report a new design of polymer phenylacetylene (PA) ligands and the ligand exchange methodology for colloidal noble metal nanoparticles (NPs). PA-terminated poly(ethylene glycol) (PEG) can bind to metal NPs through acetylide (M-C≡C-R) that affords a high grafting density. The ligand-metal interaction can be switched between σ bonding and extended π backbonding by changing grafting conditions. The σ bonding of PEG-PA with NPs is strong and it can compete with other capping ligands including thiols, while the π backbonding is much weaker. The σ bonding is also demonstrated to improve the catalytic performance of Pd for ethanol oxidation and prevent surface absorption of the reaction intermediates. Those unique binding characteristics will enrich the toolbox in the control of colloidal surface chemistry and their applications using polymer ligands.

2.
Phys Rev Lett ; 124(10): 106104, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32216385

RESUMO

As circuitry approaches single nanometer length scales, it has become important to predict the stability of single nanometer-sized metals. The behavior of metals at larger scales can be predicted based on the behavior of dislocations, but it is unclear if dislocations can form and be sustained at single nanometer dimensions. Here, we report the formation of dislocations within individual 3.9 nm Au nanocrystals under nonhydrostatic pressure in a diamond anvil cell. We used a combination of x-ray diffraction, optical absorbance spectroscopy, and molecular dynamics simulation to characterize the defects that are formed, which were found to be surface-nucleated partial dislocations. These results indicate that dislocations are still active at single nanometer length scales and can lead to permanent plasticity.

3.
Phys Rev Lett ; 121(5): 056102, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30118265

RESUMO

Pseudoelasticity in metals is typically associated with phase transformations (e.g., shape memory alloys) but has recently been observed in sub-10 nm Ag nanocrystals that rapidly recovered their original shape after deformation to large strains. The discovery of pseudoelasticity in nanoscale metals dramatically changes the current understanding of the properties of solids at the smallest length scales, and the motion of atoms at surfaces. Yet, it remains unclear whether pseudoelasticity exists in different metals and nanocrystal sizes. The challenge of observing deformation at atomistic to nanometer length scales has prevented a clear mechanistic understanding of nanoscale pseudoelasticity, although surface diffusion and dislocation-mediated processes have been proposed. We further the understanding of pseudoelasticity in nanoscale metals by using a diamond anvil cell to compress colloidal Au nanocrystals under quasihydrostatic and nonhydrostatic pressure conditions. Nanocrystal structural changes are measured using optical spectroscopy and transmission electron microscopy and modeled using electrodynamic theory. We find that 3.9 nm Au nanocrystals exhibit pseudoelastic shape recovery after deformation to large uniaxial strains of up to 20%, which is equivalent to an ellipsoid with an aspect ratio of 2. Nanocrystal absorbance efficiency does not recover after deformation, which indicates that crystalline defects may be trapped in the nanocrystals after deformation.

4.
J Phys Chem B ; 128(3): 841-848, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38197320

RESUMO

The effect of pressure on the properties of nanoparticles is a growing area of investigation. These measurements are typically performed in a colloidal suspension; however, pressure-induced changes in the interactions between the nanoparticle surface and the solvent are often neglected. Here, we report vibrational spectroscopy of a common nanoparticle ligand, 1-dodecanethiol, and a common solvent, toluene, under pressure. We find that the pressure-induced phase change of the 1-dodecanethiol is altered by the presence of toluene and that change depends on the concentration of the free ligand in the solution. At near-equal concentrations, phase segregation is observed and the dodecanethiol crystallizes independently from the toluene. On the other hand, at unequal concentrations, concerted phase transitions are observed in the dodecanethiol and toluene, and a disordered conformation of dodecanethiol is maintained under much higher pressures. These results shed light on the pressure-induced changes in intermolecular interactions between nanoparticle ligands and solvents, which must be considered in the design of high-pressure investigations of colloidal nanoparticles.

5.
Microbiol Resour Announc ; : e0128723, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624212

RESUMO

Phage Damascus was isolated from soil in northwestern Wisconsin using Microbacterium paraoxydans as the host. The Damascus genome is 56,477 bp with 3' single-stranded overhangs and 56.5% G+C content. Damascus was assigned to cluster EL and shares 42.6%-91.7% gene content with the three other phages in this cluster.

6.
Nanoscale Adv ; 6(1): 146-154, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38125594

RESUMO

Stimuli-responsive microgels, composed of small beads with soft, deformable polymer networks swollen through a combination of synthetic control over the polymer and its interaction with water, form a versatile platform for development of multifunctional and biocompatible sensors. The interfacial structural variation of such materials at a nanometer length scale is essential to their function, but not yet fully comprehended. Here, we take advantage of the plasmonic response of a gold nanorod embedded in a thermoresponsive microgel (AuNR@PNIPMAm) to monitor structural changes in the hydrogel directly near the nanorod surface. By direct comparison of the plasmon response against measurements of the hydrogel structure from dynamic light scattering and nuclear magnetic resonance, we find that the microgel shell of batch-polymerized AuNR@PNIPMAm exhibits a heterogeneous volume phase transition reflected by different onset temperatures for changes in the hydrodyanmic radius (RH) and plasmon resonance, respectively. The new approach of contrasting plasmonic response (a measure of local surface hydrogel structure) with RH and relaxation times paves a new path to gain valuable insight for the design of plasmonic sensors based on stimuli-responsive hydrogels.

7.
ACS Nano ; 11(2): 2075-2084, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28110520

RESUMO

The reabsorption of photoluminescence within a medium, an effect known as the inner filter effect (IFE), has been well studied in solutions, but has garnered less attention in regards to solid-state nanocomposites. Photoluminescence from a quantum dot (QD) can selectively excite larger QDs around it resulting in a net red-shift in the reemitted photon. In CdSe/CdS core/shell QD-polymer nanocomposites, we observe a large spectral red-shift of over a third of the line width of the photoluminescence of the nanocomposites over a distance of 100 µm resulting from the IFE. Unlike fluorescent dyes, which do not show a large IFE red-shift, QDs have a component of inhomogeneous broadening that originates from their size distribution and quantum confinement. By controlling the photoluminescence broadening as well as the sample dispersion and concentration, we show that the magnitude of the IFE within the nanocomposite can be tuned. We further demonstrate that this shift can be exploited in order to spectroscopically monitor the vertical displacement of a nanocomposite in a fluorescence microscope. Large energetic shifts in the measured emission with displacement can be maximized, resulting in a displacement sensor with submicrometer resolution. We further show that the composite can be easily attached to biological samples and is able to measure deformations with high temporal and spatial precision.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA