Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Mol Biol Evol ; 40(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37043525

RESUMO

Termites are dominant animals of tropical terrestrial ecosystems. Their success is due to their eusocial organization as well as their ability to digest dead plant tissues. While being extremely abundant, the termite diet is poor in crucial nutrients, such as fatty acids. Linoleic acid (LA) is a precursor for many vital biomolecules, and most animals depend on its dietary supply. Termites count among the exceptions known to produce LA de novo, presumably via the action of an unknown Δ12 fatty acyl desaturase (FAD) introducing the second double bond into monounsaturated oleic acid. Here, we search for the evolutionary origin of LA biosynthesis in termites. To this end, we compile the repertoire of FAD homologs from 57 species of termites and their closest relatives, the cockroaches, analyze FAD phylogeny, and identify a potential Δ12 FAD branch, which arose through duplication of a likely Δ9 FAD. We functionally characterize both paralogs and identify the Δ9 activity in the ancestral FAD-A1a and the Δ12 activity responsible for LA biosynthesis in FAD-A1b. Through the combination of homology modeling and site-directed mutagenesis, we pinpoint structural features possibly contributing to the distinct functions, regiospecificities, and substrate preferences of the two enzymes. We confirm the presence of both paralogs in all 36 studied species of the Blattoidea lineage (Blattidae, Lamproblattidae, Cryptocercidae, and termites) and conclude that we identified an evolutionary event important for the ecological success of termites, which took place in their cockroach ancestors roughly 160 My and remained conserved throughout termite diversification into 3,000 extant species.


Assuntos
Baratas , Isópteros , Animais , Ácido Linoleico , Isópteros/genética , Ecossistema , Filogenia , Ácidos Graxos
2.
Mol Ecol ; 33(17): e17494, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39136107

RESUMO

Social insects have developed a broad diversity of nesting and foraging strategies. One of these, inquilinism, occurs when one species (the inquiline) inhabits the nest built and occupied by another species (the host). Obligatory inquilines must overcome strong constraints upon colony foundation and development, due to limited availability of host colonies. To reveal how inquilinism shapes reproductive strategies in a termite host-inquiline dyad, we carried out a microsatellite marker study on Inquilinitermes inquilinus and its host Constrictotermes cavifrons. The proportion of simple, extended and mixed families was recorded in both species, as well as the presence of neotenics, parthenogenesis and multiple foundations. Most host colonies (95%) were simple families and all were monodomous. By contrast, the inquiline showed a higher proportion of extended (30%) and mixed (5%) families, and frequent neotenics (in 25% of the nests). This results from the simultaneous foundation in host nests of numerous incipient colonies, which, as they grow, may compete, fight, or merge. We also documented the use of parthenogenesis by female-female pairs. In conclusion, the classical monogamous colony pattern of the host species suggests uneventful development of simple foundations dispersed in the environment, in accordance with the wide distribution of their resources. By contrast, the multiple reproductive patterns displayed by the inquiline species reveal strong constraints on foundation sites: founders first concentrate into host nests, then must attempt to outcompete or absorb the neighbouring foundations to gain full control of the resources provided by the host nest.


Assuntos
Isópteros , Repetições de Microssatélites , Partenogênese , Animais , Isópteros/genética , Repetições de Microssatélites/genética , Feminino , Partenogênese/genética , Reprodução/genética , Masculino , Comportamento de Nidação
3.
Mol Biol Evol ; 37(6): 1775-1789, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32101294

RESUMO

Evidence accumulates that the functional plasticity of insulin and insulin-like growth factor signaling in insects could spring, among others, from the multiplicity of insulin receptors (InRs). Their multiple variants may be implemented in the control of insect polyphenism, such as wing or caste polyphenism. Here, we present a comprehensive phylogenetic analysis of insect InR sequences in 118 species from 23 orders and investigate the role of three InRs identified in the linden bug, Pyrrhocoris apterus, in wing polymorphism control. We identified two gene clusters (Clusters I and II) resulting from an ancestral duplication in a late ancestor of winged insects, which remained conserved in most lineages, only in some of them being subject to further duplications or losses. One remarkable yet neglected feature of InR evolution is the loss of the tyrosine kinase catalytic domain, giving rise to decoys of InR in both clusters. Within the Cluster I, we confirmed the presence of the secreted decoy of insulin receptor in all studied Muscomorpha. More importantly, we described a new tyrosine kinase-less gene (DR2) in the Cluster II, conserved in apical Holometabola for ∼300 My. We differentially silenced the three P. apterus InRs and confirmed their participation in wing polymorphism control. We observed a pattern of Cluster I and Cluster II InRs impact on wing development, which differed from that postulated in planthoppers, suggesting an independent establishment of insulin/insulin-like growth factor signaling control over wing development, leading to idiosyncrasies in the co-option of multiple InRs in polyphenism control in different taxa.


Assuntos
Evolução Biológica , Insetos/genética , Receptor de Insulina/genética , Asas de Animais/anatomia & histologia , Animais , Feminino , Duplicação Gênica , Heterópteros/genética , Heterópteros/crescimento & desenvolvimento , Insetos/anatomia & histologia , Masculino , Asas de Animais/crescimento & desenvolvimento
4.
Proc Biol Sci ; 288(1949): 20210511, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33878922

RESUMO

Kings and queens of termites, like queens of other advanced eusocial insects, are endowed with admirable longevity, which dramatically exceeds the life expectancies of their non-reproducing nest-mates and related solitary insects. In the quest to find the mechanisms underlying the longevity of termite reproductives, we focused on somatic maintenance mediated by telomerase. This ribonucleoprotein is well established for pro-longevity functions in vertebrates, thanks primarily to its ability of telomere extension. However, its participation in lifespan regulation of insects, including the eusocial taxa, remains understudied. Here, we report a conspicuous increase of telomerase abundance and catalytic activity in the somatic organs of primary and secondary reproductives of the termite Prorhinotermes simplex and confirm a similar pattern in two other termite species. These observations stand in contrast with the telomerase downregulation characteristic for most adult somatic tissues in vertebrates and also in solitary insects and non-reproducing castes of termites. At the same time, we did not observe caste-specific differences in telomere lengths that might explain the differential longevity of termite castes. We conclude that although the telomerase activation in termite reproductives is in line with the broadly assumed association between telomerase and longevity, its direct phenotypic impact remains to be elucidated.


Assuntos
Isópteros , Telomerase , Animais , Longevidade , Reprodução
5.
J Biol Chem ; 294(2): 410-423, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30455350

RESUMO

The sesquiterpenoid juvenile hormone (JH) is vital to insect development and reproduction. Intracellular JH receptors have recently been established as basic helix-loop-helix transcription factor (bHLH)/PAS proteins in Drosophila melanogaster known as germ cell-expressed (Gce) and its duplicate paralog, methoprene-tolerant (Met). Upon binding JH, Gce/Met activates its target genes. Insects possess multiple native JH homologs whose molecular activities remain unexplored, and diverse synthetic compounds including insecticides exert JH-like effects. How the JH receptor recognizes its ligands is unknown. To determine which structural features define an active JH receptor agonist, we tested several native JHs and their nonnative geometric and optical isomers for the ability to bind the Drosophila JH receptor Gce, to induce Gce-dependent transcription, and to affect the development of the fly. Our results revealed high ligand stereoselectivity of the receptor. The geometry of the JH skeleton, dictated by two stereogenic double bonds, was the most critical feature followed by the presence of an epoxide moiety at a terminal position. The optical isomerism at carbon C11 proved less important even though Gce preferentially bound a natural JH enantiomer. The results of receptor-ligand-binding and cell-based gene activation assays tightly correlated with the ability of different geometric JH isomers to induce gene expression and morphogenetic effects in the developing insects. Molecular modeling supported the requirement for the proper double-bond geometry of JH, which appears to be its major selective mechanism. The strict stereoselectivity of Gce toward the natural hormone contrasts with the high potency of synthetic Gce agonists of disparate chemistries.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Hormônios Juvenis/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Hormônios Juvenis/química , Modelos Moleculares , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Estereoisomerismo
6.
Sensors (Basel) ; 20(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935890

RESUMO

This article discusses the correlation method for time delay estimation, its disadvantages, and drawbacks. It is shown that the correlation method for material velocity measurement based on images of instantaneous changes of the concentration material inside measured by twin planes electrical tomography has serious limitations, especially in the case of plug regime. The basic problem is the non-stationarity of measured data, therefore the requirement of correlability of input data should be fulfilled. The requirement correlatability of input data imposes limitations on the possibility of continuous velocity measurement. This means that the material velocity can only be calculated when data are correlatable. An original algorithm of automatic extraction of the suitable time intervals to calculate material velocity is proposed. The algorithm allows measuring the flow velocity in a proper and accurate way. The examples of the correct velocity calculation, using the proposed concept for the gas-solid flow regime, are presented.

7.
BMC Evol Biol ; 19(1): 131, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31226928

RESUMO

BACKGROUND: A decade ago, the mixed reproductive strategy Asexual Queen Succession (AQS) was first described in termites. In AQS species, the workers, soldiers and dispersing reproductives are produced through sexual reproduction, while non-dispersing (neotenic) queens arise through automictic thelytokous parthenogenesis, replace the founding queen and mate with the founding king. As yet, AQS has been documented in six species from three lineages of lower (Rhinotermitidae) and higher (Termitinae: Termes group and Syntermitinae) termites. Independent evolution of the capacity of thelytoky as a preadaptation to AQS is supported by different mechanisms of automixis in each of the three clades. These pioneering discoveries prompt the question on the extent of thelytoky and AQS in the diversified family of higher termites. RESULTS: Here, we investigated the capacity of thelytoky and occurrence of AQS in three species from the phylogenetic proximity of the neotropical AQS species Cavitermes tuberosus (Termitinae: Termes group): Palmitermes impostor, Spinitermes trispinosus, and Inquilinitermes inquilinus. We show that queens of all three species are able to lay unfertilized eggs, which undergo thelytokous parthenogenesis (via gamete duplication as in C. tuberosus) and develop through the transitional stage of aspirants into replacement neotenic queens. CONCLUSIONS: The breeding system in P. impostor is very reminiscent of that described in C. tuberosus and can be characterized as AQS. In the remaining two species, our limited data do not allow classifying the breeding system as AQS; yet, also in these species the thelytokous production of neotenic females appears to be a systematic element of reproductive strategies. It appears likely that the capacity of thelytokous parthenogenesis evolved once in the Termes group, and may ultimately be found more widely, well beyond these Neotropical species.


Assuntos
Isópteros/classificação , Isópteros/fisiologia , Animais , Feminino , Isópteros/genética , Masculino , Repetições de Microssatélites , Partenogênese , Filogenia , Reprodução Assexuada
8.
J Chem Ecol ; 44(6): 534-546, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29752680

RESUMO

Termite colonies are almost always founded by a pair of winged dispersers, in spite of the high costs and low success rates inherent in independent colony foundation. The dispersal flights of imagoes from natal colonies are followed by mate search, mediated by sex-pairing pheromones. Here, we studied the chemistry of sex-pairing pheromones and the related aspects of mate search in winged imagoes of two facultatively parthenogenetic species, Embiratermes neotenicus and Silvestritermes minutus, and an additional species from the same subfamily, Silvestritermes heyeri. All three species are widespread in the Neotropics, including the rainforests of French Guiana. After the dispersal flight and spontaneous loss of wings, females expose their hypertrophied tergal glands situated under abdominal tergites VIII - X. The females are attractive to males and, upon direct contact, the two sexes form characteristic tandems. Chemical analyses indicated that the females secrete species-specific combinations of unbranched, unsaturated C12 primary alcohols from the tergal glands, (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol (approx. 200 pg per female) and (3Z)-dodec-3-enol (185 pg) in E. neotenicus, (3Z,6Z)-dodeca-3,6-dien-1-ol (3500 pg) in S. heyeri, and (3Z,6Z)-dodeca-3,6-dien-1-ol (300 pg) and (3Z)-dodec-3-enol (50 pg) in S. minutus. (3Z,6Z,8E)-Dodeca-3,6,8-trien-1-ol and (3Z,6Z)-dodeca-3,6-dien-1-ol act as major pheromone components in the respective species and mimic the function of female tergal gland extracts in electrophysiological and behavioral experiments. Biologically relevant amounts of the third compound, (3Z)-dodec-3-enol, elicited non-significant reactions in males of E. neotenicus and S. minutus, and slight synergistic effects in males of S. minutus when tested in combination with the major component.


Assuntos
Isópteros/fisiologia , Atrativos Sexuais/química , Comportamento Sexual Animal/fisiologia , Álcoois/química , Álcoois/isolamento & purificação , Animais , Glândulas Exócrinas/metabolismo , Glândulas Exócrinas/patologia , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Masculino , Atrativos Sexuais/análise , Atrativos Sexuais/isolamento & purificação , Microextração em Fase Sólida , Especificidade da Espécie , Estereoisomerismo
9.
J Nat Prod ; 81(10): 2266-2274, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30299957

RESUMO

The queens of social insects differ from sterile colony members in many aspects of their physiology. Besides adaptations linked with their specialization for reproduction and extended lifespan, the queens also invest in the maintenance of their reproductive dominance by producing exocrine chemicals signaling their presence to the nestmates. The knowledge of the chemistry of queen-specific cues in termites is scarce. In addition to the contact recognition based on cuticular hydrocarbons, long-range signals mediated by volatiles are expected to participate in queen signaling, especially in populous colonies of higher termites (Termitidae). In queens of the higher termite Silvestritermes minutus (Syntermitinae), we have detected a previously undescribed volatile. It is present in important quantities on the body surface and in the headspace, ovaries, and body cavity. MS and GC-FTIR data analyses led us to propose the structure of the compound to be a macrolide 10-pentyl-3,4,5,8,9,10-hexahydro-2 H-oxecin-2-one. We performed enantiodivergent syntheses of two possible enantiomers starting from enantiopure ( S)-glycidyl tosylate. The synthetic sequence involved macrolide-closing metathesis quenched with a ruthenium scavenging agent. The absolute and relative configuration of the compound was assigned to be (5 Z,9 S)-tetradec-5-en-9-olide. Identification and preparation of the compound allow for investigation of its biological significance.


Assuntos
Isópteros/química , Macrolídeos/síntese química , Animais , Feminino , Indicadores e Reagentes , Macrolídeos/química , Macrolídeos/farmacologia , Espectrometria de Massas , Estrutura Molecular , Ovário/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo
10.
Evol Dev ; 19(6): 253-262, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29115023

RESUMO

In termite species with asexual queen succession (AQS), parthenogenetically produced immatures mostly differentiate into secondary queens, called "neotenics." In order to elucidate the ontogenetic origin of neotenics in Cavitermes tuberosus (Termitidae: Termitinae), a neotropical termite with AQS, we investigated developmental pathways of offspring according to their sex and genetic origin using both morphometric and genetic tools. The caste system of C. tuberosus follows the classical pathway of Termitidae. After the first larval instar, there is a bifurcation between two developmental lines. The apterous line is composed of a second larval instar, several worker instars, presoldiers, and soldiers. Workers display a consistent male bias and soldiers are female-only. The nymphal line is composed of five nymphal instars and the imago stage. We highlight that neotenic queens derive from third and fourth instar nymphs displaying peculiar morphological traits, here termed "aspirants," most of which are produced by parthenogenesis. Aspirants are present in all nests and perform worker tasks while waiting for the queen's death to differentiate into neotenic queens. Aspirants can successfully be used to demonstrate the occurrence of parthenogenesis in termite species whose reproductive cores are difficult to access.


Assuntos
Evolução Biológica , Isópteros/crescimento & desenvolvimento , Animais , Feminino , Isópteros/anatomia & histologia , Masculino , Ninfa , Partenogênese , Análise de Componente Principal , Razão de Masculinidade , Comportamento Sexual Animal , Comportamento Social
11.
Proc Biol Sci ; 283(1832)2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27252019

RESUMO

Termite colonies are typically founded by a pair of sexually reproducing dispersers, which can sometimes be replaced by some of their offspring. Some Reticulitermes and Embiratermes species routinely practice asexual queen succession (AQS): the queen is replaced by neotenic daughters produced by parthenogenesis, which mate with the primary king. Here, to cast light on the evolution of AQS, we investigated another candidate species, Cavitermes tuberosus (Termitinae). Of 95 nests, 39 contained a primary queen and 28 contained neotenic females (2-667 individuals), usually with the primary king. Microsatellite analyses confirmed that colonies were initiated by single pairs after large dispersal flights. More than 80% of the neotenic females were of exclusively maternal origin and completely homozygous, suggesting automictic parthenogenesis with gamete duplication. Conversely, workers, soldiers, and most alates and primary reproductives were produced sexually. AQS often occurs late, after colonies have reached maturity, whereas early AQS in other species may boost the young colony's growth rate. We suggest additional benefits of AQS in C. tuberosus, related with a smaller size, lesser stability and higher mobility of colonies. Our data add to the phylogenetical dispersion and diversity of modalities of AQS in termites, supporting a multiple evolutionary origin of this process.


Assuntos
Variação Genética , Isópteros/genética , Isópteros/fisiologia , Partenogênese , Animais , Feminino
12.
J Chem Ecol ; 42(10): 1070-1081, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27639394

RESUMO

Termite nests often are referred to as the most elaborate constructions of animals. However, some termite species do not build a nest at all and instead found colonies inside the nests of other termites. Since these so-called inquilines do not need to be in direct contact with the host population, the two colonies usually live in separate parts of the nest. Adaptations of both the inquiline and its host are likely to occur to maintain the spatial exclusion and reduce the costs of potential conflicts. Among them, mutual avoidance, based on chemical cues, is expected. We investigated chemical aspects of cohabitation between Constrictotermes cavifrons (Nasutitermitinae) and its obligatory inquiline Inquilinitermes inquilinus (Termitinae). Inquiline soldiers produce in their frontal glands a blend of wax esters, consisting of the C12 alcohols (3Z)-dodec enol, (3Z,6Z)-dodecadienol, and dodecanol, esterified with different fatty acids. The C12 alcohols appear to be cleaved gradually from the wax esters, and they occur in the frontal gland, in soldier headspace, and in the walls of the inquiline part of the nest. Electrophysiological experiments revealed that (3Z)-dodecenol and (3Z,6Z)-dodecadienol are perceived by workers of both species. Bioassays indicated that inquiline soldier heads, as well as the two synthetic compounds, are attractive to conspecific workers and elicit an arresting behavior, while host soldiers and workers avoid these chemicals at biologically relevant amounts. These observations support the hypothesis that chemically mediated spatial separation of the host and the inquiline is an element of a conflict-avoidance strategy in these species.


Assuntos
Isópteros/fisiologia , Comportamento de Nidação , Álcoois/metabolismo , Comunicação Animal , Animais , Reação de Fuga , Esterificação , Ésteres/metabolismo , Feromônios/metabolismo , Olfato , Ceras/metabolismo
13.
Proc Biol Sci ; 282(1809): 20150260, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26019158

RESUMO

Asexual queen succession (AQS), in which workers, soldiers and dispersing reproductives are produced sexually while numerous non-dispersing queens arise through thelytokous parthenogenesis, has recently been described in three species of lower termites of the genus Reticulitermes. Here, we show that AQS is not an oddity restricted to a single genus of lower termites, but a more widespread strategy occurring also in the most advanced termite group, the higher termites (Termitidae). We analysed the genetic structure in 10 colonies of the Neotropical higher termite Embiratermes neotenicus (Syntermitinae) using five newly developed polymorphic microsatellite loci. The colonies contained one primary king accompanied either by a single primary queen or by up to almost 200 neotenic queens. While the workers, the soldiers and most future dispersing reproductives were produced sexually, the non-dispersing neotenic queens originated through thelytokous parthenogenesis of the founding primary queen. Surprisingly, the mode of thelytoky observed in E. neotenicus is most probably automixis with central fusion, contrasting with the automixis with terminal fusion documented in Reticulitermes. The occurrence of AQS based on different mechanisms of ploidy restoration raises the hypothesis of an independent evolutionary origin of this unique reproductive strategy in individual lineages of lower and higher termites.


Assuntos
Isópteros/fisiologia , Partenogênese , Animais , Evolução Biológica , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Genótipo , Haplótipos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Isópteros/genética , Dados de Sequência Molecular , Análise de Sequência de DNA
14.
Chembiochem ; 15(4): 533-6, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24458870

RESUMO

In 1974, (E)-1-nitropentadec-1-ene, a strong lipophilic contact poison of soldiers of the termite genus Prorhinotermes, was the first-described insect-produced nitro compound. However, its biosynthesis remained unknown. In the present study, we tested the hypothesis that (E)-1-nitropentadec-1-ene biosynthesis originates with condensation of amino acids with tetradecanoic acid. By using in vivo experiments with radiolabeled and deuterium-labeled putative precursors, we show that (E)-1-nitropentadec-1-ene is synthesized by the soldiers from glycine or L-serine and tetradecanoic acid. We propose and discuss three possible biosynthetic pathways.


Assuntos
Isópteros/química , Naftalenos/metabolismo , Esfingosina/análogos & derivados , Aminoácidos/química , Aminoácidos/metabolismo , Animais , Deutério/química , Isópteros/metabolismo , Marcação por Isótopo , Ácido Mirístico/química , Ácido Mirístico/metabolismo , Naftalenos/química , Esfingosina/química , Estereoisomerismo
15.
J Chem Ecol ; 40(11-12): 1269-76, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25355635

RESUMO

Effective defense is a common characteristic of insect societies. Indeed, the occurrence of specialized defenders, soldiers, has been the first step toward eusociality in several independent lineages, including termites. Among the multitude of defensive strategies used by termite soldiers, defense by chemicals plays a crucial role. It has evolved with complexity in advanced isopteran lineages, whose soldiers are equipped with a unique defensive organ, the frontal gland. Besides direct defense against predators, competitors, and pathogens, the chemicals emitted by soldiers from the frontal gland are used as signals of alarm. In this study, we investigated the chemical composition of the defensive secretion produced by soldiers of the termite Termitogeton planus (Isoptera: Rhinotermitidae), from West Papua, and the effects of this secretion on the behavior of termite groups. Detailed two-dimensional gas chromatography/mass spectrometry analyses of the soldier defensive secretion revealed the presence of four linear and nine monoterpene hydrocarbons. Soldier head extracts, as well as synthetic mixtures of the monoterpenes found in these extracts, elicited alarm behavior in both soldiers and pseudergates. Our results suggest that the alarm is not triggered by a single monoterpene from the defensive blend, but by a multi-component signal combining quantitatively major and minor compounds.


Assuntos
Hidrocarbonetos/química , Isópteros/química , Isópteros/fisiologia , Feromônios/química , Animais , Glândulas Exócrinas/química , Cromatografia Gasosa-Espectrometria de Massas , Monoterpenos/química , Comportamento Social
16.
Curr Opin Insect Sci ; 61: 101157, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38142979

RESUMO

Termite eusociality is accompanied by flagrant caste polyphenism manifested by the presence of several sterile (workers and soldiers) and reproductive (imaginal and neotenic kings and queens) caste phenotypes. Imaginal kings and queens are developmentally equivalent to adults of other hemimetabolous insects but display multiple adaptations inherent to their role of eusocial colony founders, such as long lifespan and high fecundity. Herein, we summarize the recent advances in understanding the biology of imaginal (primary) queens as emblematic examples of termite polyphenism acquired during social evolution. We focus on the control of queen development, on dynamics in physiology and fecundity during the queen's life, on new findings about queen fertility signaling, and on proximate mechanisms underlying queen longevity.


Assuntos
Isópteros , Animais , Isópteros/fisiologia , Fertilidade , Reprodução , Longevidade , Fenótipo
17.
Insect Sci ; 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034424

RESUMO

Kings and queens of termites are endowed with an extraordinary longevity coupled with lifelong fecundity. We recently reported that termite kings and queens display a dramatically increased enzymatic activity and abundance of telomerase in their somatic organs when compared to short-lived workers and soldiers. We hypothesized that this telomerase activation may represent a noncanonical pro-longevity function, independent of its canonical role in telomere maintenance. Here, we explore this avenue and investigate whether the presumed noncanonical role of telomerase may be due to alternative splicing of the catalytic telomerase subunit TERT and whether the subcellular localization of TERT isoforms differs among organs and castes in the termite Prorhinotermes simplex. We empirically confirm the expression of four in silico predicted splice variants (psTERT1-A, psTERT1-B, psTERT2-A, psTERT2-B), defined by N-terminal splicing implicating differential localizations, and C-terminal splicing giving rise to full-length and truncated isoforms. We show that the transcript proportions of the psTERT are caste- and tissue-specific and that the extranuclear full-length isoform TERT1-A is relatively enriched in the soma of neotenic kings and queens compared to their gonads and to the soma of workers. We also show that extranuclear TERT protein quantities are significantly higher in the soma of kings and queens compared to workers, namely due to the cytosolic TERT. Independently, we confirm by microscopy the extranuclear TERT localization in somatic organs. We conclude that the presumed pleiotropic action of telomerase combining the canonical nuclear role in telomere maintenance with extranuclear functions is driven by complex TERT splicing.

18.
Nat Commun ; 15(1): 6724, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112457

RESUMO

The higher classification of termites requires substantial revision as the Neoisoptera, the most diverse termite lineage, comprise many paraphyletic and polyphyletic higher taxa. Here, we produce an updated termite classification using genomic-scale analyses. We reconstruct phylogenies under diverse substitution models with ultraconserved elements analyzed as concatenated matrices or within the multi-species coalescence framework. Our classification is further supported by analyses controlling for rogue loci and taxa, and topological tests. We show that the Neoisoptera are composed of seven family-level monophyletic lineages, including the Heterotermitidae Froggatt, Psammotermitidae Holmgren, and Termitogetonidae Holmgren, raised from subfamilial rank. The species-rich Termitidae are composed of 18 subfamily-level monophyletic lineages, including the new subfamilies Crepititermitinae, Cylindrotermitinae, Forficulitermitinae, Neocapritermitinae, Protohamitermitinae, and Promirotermitinae; and the revived Amitermitinae Kemner, Microcerotermitinae Holmgren, and Mirocapritermitinae Kemner. Building an updated taxonomic classification on the foundation of unambiguously supported monophyletic lineages makes it highly resilient to potential destabilization caused by the future availability of novel phylogenetic markers and methods. The taxonomic stability is further guaranteed by the modularity of the new termite classification, designed to accommodate as-yet undescribed species with uncertain affinities to the herein delimited monophyletic lineages in the form of new families or subfamilies.


Assuntos
Genômica , Isópteros , Filogenia , Isópteros/genética , Isópteros/classificação , Animais , Genômica/métodos , Genoma de Inseto
19.
Mol Phylogenet Evol ; 69(3): 694-703, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23891950

RESUMO

Species boundaries are traditionally inferred using morphological characters, although morphology sometimes fails to correctly delineate species. To overcome this limitation, researchers have widely taken advantage of alternative methods such as DNA barcoding or analysis of cuticular hydrocarbons (CHs) profiles, but rarely use them simultaneously in an iterative taxonomic approach. Here, we follow such an approach using morphology, DNA barcoding and CHs profiles to precisely discriminate species of soldierless termites, a diversified clade constituting about one-third of the Neotropical termite species richness, but poorly resolved taxonomically due to the paucity of useful characters. We sampled soldierless termites in various forest types of the Nouragues Nature Reserve, French Guiana. Our results show that morphological species determination generally matches DNA barcoding, which only suggests the existence of three cryptic species in the 31 morphological species. Among them, Longustitermes manni is the only species whose splitting is corroborated by ecological data, other widely distributed species being supported by DNA barcoding. On the contrary, although CHs profiles provide a certain taxonomic signal, they often suggest inconsistent groupings which are not supported by other methods. Overall, our data support DNA barcoding and morphology as two efficient methods to distinguish soldierless termite species.


Assuntos
Classificação/métodos , Especiação Genética , Isópteros/classificação , Filogenia , Animais , Código de Barras de DNA Taxonômico , Guiana Francesa , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos/química , Isópteros/anatomia & histologia , Isópteros/química , Isópteros/genética , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Chem Senses ; 37(1): 55-63, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21835765

RESUMO

Within the multitude of chemical signals used by termites, the trail marking by means of pheromones is ubiquitous. Chemistry and biology of the trail-following communication have been described in more than 60 species from all families except for the Neotropical Serritermitidae. The chemical ecology of Serritermitidae is of special interest not only as a missing piece of knowledge on the diversity and evolution of isopteran pheromones but also because it may contribute to the debate on the phylogenetic position of this family, which is still unresolved. Therefore, we aimed in this study to identify the trail-following pheromone of the serritermitid Glossotermes oculatus. Based on a combined approach of analytical chemistry, electrophysiology, and behavioral bioassays, we propose (10Z,13Z)-nonadeca-10,13-dien-2-one to be the trail-following pheromone of G. oculatus, secreted by the sternal gland of pseudergates. Thus, we report on a new termite trail-following pheromone of an unexpected chemical structure, a ketone with 19 carbons, contrasting with unsaturated alcohols containing 12 carbons as trail-following pheromones in other advanced termite families. In addition to this unique trail-following pheromone, we also describe the sternal gland in pseudergates as an organ of unusual shape, size, and structure when compared with other isopteran species. These results underline the peculiarity of the family Serritermitidae and prompt our interest in the chemistry of pheromones in the other genus of the family, Serritermes.


Assuntos
Ácidos Graxos Insaturados/análise , Isópteros/química , Feromônios/análise , Animais , Comportamento Animal/efeitos dos fármacos , Bioensaio , Glândulas Exócrinas/anatomia & histologia , Glândulas Exócrinas/química , Glândulas Exócrinas/metabolismo , Ácidos Graxos Insaturados/síntese química , Ácidos Graxos Insaturados/química , Isópteros/fisiologia , Feromônios/síntese química , Feromônios/química , Feromônios/metabolismo , Feromônios/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA