Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Exp Cell Res ; 424(2): 113522, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796747

RESUMO

High mobility group protein B1 (HMGB1), a highly conserved non-histone nuclear protein, is highly expressed in fibrotic diseases; however, the role of HMGB1 in pulmonary fibrosis has not been fully elucidated. In this study, an epithelial-mesenchymal transition (EMT) model was constructed using transforming growth factor-ß1 (TGF-ß1) to stimulate BEAS-2B cells in vitro, and HMGB1 was knocked down or overexpressed to observe its effects on cell proliferation, migration and EMT. Meanwhile, string system, immunoprecipitation and immunofluorescence analyses were applied to identify and examine the relationship between HMGB1 and its potential interacting protein Brahma-related gene 1 (BRG1), and to explore the mechanism of interaction between HMGB1 and BRG1 in EMT. The results indicate that exogenous increase in HMGB1 promotes cell proliferation and migration and facilitates EMT by enhancing the PI3K/Akt/mTOR signaling pathway, whereas silencing HMGB1 has the opposite effect. Mechanistically, HMGB1 exerts these functions by interacting with BRG1, which may enhance BRG1 function and activate the PI3K/Akt/mTOR signaling pathway, thereby promoting EMT. These results suggest that HMGB1 is important for EMT and is a potential therapeutic target for the treatment of pulmonary fibrosis.


Assuntos
Proteína HMGB1 , Fibrose Pulmonar , Humanos , Transição Epitelial-Mesenquimal , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibrose Pulmonar/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
2.
Ecotoxicol Environ Saf ; 275: 116286, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564864

RESUMO

Pneumoconiosis is one of the most serious occupational diseases worldwide. Silicosis due to prolonged inhalation of free silica dust during occupational activities is one of the main types. Cuproptosis is a newly discovered mode of programmed cell death characterized by the accumulation of free copper in the cell, which ultimately leads to cell death. Increased copper in the serum of silicosis patients, suggests that the development of silicosis is accompanied by changes in copper metabolism, but whether cuproptosis is involved in the progression of silicosis is actually to be determined. To test this hypothesis, we screened the genetic changes in patients with idiopathic fibrosis by bioinformatics methods and predicted and functionally annotated the cuproptosis-related genes among them. Subsequently, we established a mouse silicosis model and detected the concentration of copper ions and the activity of ceruloplasmin (CP) in serum, as well as changes of the concentration of copper and cuproptosis related genes in mouse lung tissues. We identified 9 cuproptosis-related genes among the differential genes in patients with IPF at different times and the tissue-specific expression levels of ferredoxin 1 (FDX1) and Lipoyl synthase (LIAS) proteins. Furthermore, serum CP activity and copper ion levels in silicosis mice were elevated on days 7th and 56th after silica exposure. The expression of CP in mouse lung tissue elevated at all stages after silica exposure. The mRNA level of FDX1 decreased on days 7th and 56th, and the protein level remained in accordance with the mRNA level on day 56th. LIAS and Dihydrolipoamide dehydrogenase (DLD) levels were downregulated at all times after silica exposure. In addition, Heatshockprotein70 (HSP70) expression was increased on day 56. In brief, our results demonstrate that there may be cellular cuproptosis during the development of experimental silicosis in mice and show synchronization with enhanced copper loading in mice.


Assuntos
Cobre , Silicose , Humanos , Animais , Camundongos , Cobre/toxicidade , Silicose/genética , Apoptose , Biologia Computacional , Modelos Animais de Doenças , RNA Mensageiro , Dióxido de Silício/toxicidade
3.
Ecotoxicol Environ Saf ; 272: 116029, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290312

RESUMO

Manganese is essential trace elements, to participate in the body a variety of biochemical reactions, has important physiological functions, such as stimulate the immune cell proliferation, strengthen the cellular immunity, etc. However, excessive manganese exposure can cause damage to multiple systems of the body.The immune system is extremely vulnerable to external toxicants, however manganese research on the immune system are inadequate and biomarkers are lacking. Therefore, here we applied a manganese-exposed rat model to make preliminary observations on the immunotoxic effects of manganese. We found that manganese exposure inhibited humoral immune function in rats by decreasing peripheral blood IgG (ImmunoglobulinG, IgG), IgM (ImmunoglobulinM, IgM) and complement C3 levels; It also regulates rat cellular immune activity by influencing peripheral blood, spleen, and thymus T cell numbers and immune organ ICs (Immune Checkpoints, ICs) and cytokine expression. Furthermore, it was revealed that the impact of manganese exposure on the immune function of rats exhibited a correlation with both the dosage and duration of exposure. Notably, prolonged exposure to high doses of manganese had the most pronounced influence on rat immune function, primarily manifesting as immunosuppression.The above findings suggest that manganese exposure leads to impaired immune function and related changes in immune indicators, or may provide clues for the discovery of its biomarkers.


Assuntos
Manganês , Linfócitos T , Ratos , Animais , Manganês/toxicidade , Imunoglobulina M , Imunoglobulina G , Biomarcadores
4.
Int J Obes (Lond) ; 47(9): 817-824, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37179449

RESUMO

BACKGROUND: The relationship of insufficient sleep with the increased risk of obesity has been reported, but less is known about other sleep dimensions in the sleep-obesity associations. OBJECTIVES: To assess the associations of multiple sleep dimensions with overall and abdominal obesity among Chinese students. METHODS: This was a cross-sectional study involving 10,686 Han students aged 9-18 from Chinese National Survey on Students' Constitution and Health (CNSSCH). We collected sex, age, regions, parental educational levels, physical activity duration and sleep-related information by questionnaire survey, and also conducted anthropometric measurements including height, weight and waist circumference (WC). Unadjusted and adjusted binary logistic regression models were used to estimate the associations of sleep-related dimensions with obesity-related indicators. RESULTS: Short sleep duration was associated with higher body mass index (BMI), larger WC and higher waist-to-height ratio (WHtR) in 9-12 and 16-18 age groups, whereas prolonged sleep duration on weekday was associated with higher BMI in 13-15 age group. Non-habitual midday napping and midday napping ≤0.5 h/d (vs 0.5 to 1 h/d) increased the risk of higher BMI in 13-15 age group, and the former was also associated with larger WC in 9-12 age group. Late bedtime was associated with larger WC and higher WHtR in 9-12 age group and with higher BMI and WHtR in 13-15 age group. Students aged 9-12 with social jet lag ≥2 h were found to have greater BMI after adjustment (Odds Ratio: 1.421; 95% confidence interval: 1.066-1.894). CONCLUSIONS: Short or overlong sleep duration, late bedtime and great social jet lag were associated with higher prevalence of overall or abdominal obesity, while moderate midday napping can effectively decrease the risk. Those findings may assist in developing preventive strategies to combat obesity epidemic.


Assuntos
Síndrome do Jet Lag , Obesidade Abdominal , Humanos , Criança , Adolescente , Obesidade Abdominal/epidemiologia , Estudos Transversais , Obesidade/epidemiologia , Índice de Massa Corporal , Circunferência da Cintura , Sono , Fatores de Risco
5.
Ecotoxicol Environ Saf ; 261: 115087, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37285680

RESUMO

Long-term inhalation of silica particles in the workplace causes silicosis, which is incurable and seriously endangers the health of workers. It is believed that silicosis is caused by an imbalance of the pulmonary immune microenvironment, in which pulmonary phagocytes play a crucial role. As an emerging immunomodulatory factor, it is unclear whether T cell immunoglobulin and mucin domain-containing protein 3 (TIM3) participate in silicosis by modulating pulmonary phagocytes function. The purpose of this study was to investigate the dynamic changes of the TIM-3 in pulmonary macrophages, dendritic cells (DCs), and monocytes during the development of silicosis in mice. The plasma levels of soluble TIM-3 in silicosis patients were also examined. Flow cytometry was used to identify alveolar macrophages (AMs), interstitial macrophages (IMs), CD11b+ DC, CD103+ DC, Ly6C+, and Ly6C- monocytes in mouse lung tissues, and further analyses were conducted on the expression of TIM-3. Results showed that soluble TIM-3 was significantly elevated in plasma of silicosis patients, and the level of which was higher in stage II and III patients than that in stage I. In silicosis mice, the protein and mRNA levels of TIM-3 and Galectin9 were significantly upregulated in lung tissues. Specific to pulmonary phagocytes, silica exposure affected TIM-3 expression in a cell-specific and dynamic manner. In macrophages, TIM-3 expression upregulated in AM after 28 days and 56 days of silica instillation, while the expression of TIM-3 in IM decreased at all observation time points. In DCs, silica exposure only caused a decrease of TIM-3 expression in CD11b+ DCs. In monocytes, TIM-3 dynamics in Ly6C+ and Ly6C- monocytes were generally consistent during silicosis development, which significant decrease after 7 and 28 days of silica exposure. In conclusion, TIM-3 may mediate the development of silicosis by regulating pulmonary phagocytes.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Silicose , Camundongos , Animais , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Pulmão/metabolismo , Silicose/metabolismo , Fagócitos , Dióxido de Silício/toxicidade
6.
Ecotoxicol Environ Saf ; 249: 114401, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508789

RESUMO

Silicosis caused by long-term inhalation of crystalline silica during occupational activities seriously threatens the health of occupational populations. Imbalances in T helper 1(Th1), Th2, Th17, and regulatory T cells (Tregs) promote the development of pulmonary silicosis. Exosomes and their contents, especially microRNAs (miRNAs), represent a new type of intercellular signal transmission mediator related to various diseases including pulmonary fibrosis. However, whether exosomal miRNAs can affect the progression of silicosis by regulating T cell differentiation remains to be determined. To test this hypothesis, we established a miR-125a-5p antagomir mouse model and examined changes in miR-125a-5p levels and T cell subtypes. We found that miR-125a-5p levels were increased in lung tissues and serum exosomes in the silica group at 7 days and 28 days. Downregulation of miR-125a-5p attenuated α-smooth muscle actin (α-SMA), collagen I, fibronectin, p-p65, and p-inhibitor of nuclear factor kappa B (NF-κB) kinase (IKK) protein expression, while tumor necrosis factor receptor-associated factor 6 (TRAF6) and p-inhibitor of κBα (IKBα) expression were increased. MiR-125a-5p anta-miR treatment contributes to the maintenance of Th1/Th2 balance during the progression of pulmonary fibrosis. Our findings indicated that knockdown miR-125a-5p could regulate T lymphocyte subsets and significantly reduce pulmonary fibrosis by targeting TRAF6.


Assuntos
Exossomos , MicroRNAs , Fibrose Pulmonar , Dióxido de Silício , Silicose , Animais , Camundongos , Proliferação de Células , MicroRNAs/genética , MicroRNAs/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Dióxido de Silício/toxicidade , Silicose/genética , Silicose/patologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Exossomos/genética , Exossomos/metabolismo
7.
Ecotoxicol Environ Saf ; 249: 114410, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516619

RESUMO

Silicosis, a disease characterized by diffuse fibrosis of the lung tissue, is caused by long-term inhalation of free silica (SiO2) dust in the occupational environment and is currently the most serious occupational diseases of pneumoconiosis. Several studies have suggested that alveolar type Ⅱ epithelial cells (AEC Ⅱ) undergo epithelial-mesenchymal transition (EMT) as one of the crucial components of silicosis in lung fibroblasts. A2aR can play a critical regulatory role in fibrosis-related diseases by modulating the Wnt/ß-catenin pathway, but its function in the EMT process of silicosis has not been explained. In this study, an EMT model of A549 cells was established. The results revealed that A2aR expression is reduced in the EMT model. Furthermore, activation of A2aR or suppression of the Wnt/ß-catenin pathway reversed the EMT process, while the opposite result was obtained by inhibiting A2aR. In addition, activation of A2aR in a mouse silicosis model inhibited the Wnt/ß-catenin pathway and ameliorated the extent of silica-induced lung fibrosis in mice. To sum up, we uncovered that A2aR inhibits fibrosis and the EMT process in silicosis by regulating the Wnt/ß-catenin pathway. Our study can provide an experimental basis for elucidating the role of A2aR in the development of silicosis and offer new ideas for further exploration of interventions for silicosis.


Assuntos
Transição Epitelial-Mesenquimal , Fibrose Pulmonar , Receptor A2A de Adenosina , Silicose , beta Catenina , Animais , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Dióxido de Silício/toxicidade , Silicose/metabolismo , Silicose/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Via de Sinalização Wnt , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Agonistas do Receptor A2 de Adenosina/farmacologia
8.
Ecotoxicol Environ Saf ; 249: 114392, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508811

RESUMO

Epithelial-mesenchymal transdifferentiation of alveolar type Ⅱ epithelial cells is a vital source of pulmonary myofibroblasts, and myofibroblasts formation is recognized as an important phase in the pathological process of silicosis. miR-30c-5p has been determined to be relevant in the activation of the epithelial-mesenchymal transition (EMT) in numerous disease processes. However, elucidating the role played by miR-30c-5p in the silicosis-associated EMT process remains a great challenge. In this work, based on the establishment of mouse silicosis and A549 cells EMT models, miR-30c-5p was interfered with in vivo and in vitro models to reveal its effects on EMT and autophagy. Moreover, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), connective tissue growth factor (CTGF), autophagy-related gene 5 (ATG5), and autophagy were further interfered with in the A549 cells models to uncover the possible molecular mechanism through which miR-30c-5p inhibits silicosis associated EMT. The results demonstrated the targeted binding of miR-30c-5p to CTGF, ATG5, and MALAT1, and showed that miR-30c-5p could prevent EMT in lung epithelial cells by acting on CTGF and ATG5-associated autophagy, thereby inhibiting the silicosis fibrosis process. Furthermore, we also found that lncRNA MALAT1 might competitively absorb miR-30c-5p and affect the EMT of lung epithelial cells. In a word, interfering with miR-30c-5p and its related molecules (MALAT1, CTGF, and ATG5-associated autophagy) may provide a reference point for the application of silicosis intervention-related targets.


Assuntos
Células Epiteliais Alveolares , Proteína 5 Relacionada à Autofagia , Fator de Crescimento do Tecido Conjuntivo , Transição Epitelial-Mesenquimal , MicroRNAs , RNA Longo não Codificante , Silicose , Animais , Camundongos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Proteína 5 Relacionada à Autofagia/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Dióxido de Silício/toxicidade , Silicose/genética , Silicose/metabolismo
9.
Ecotoxicol Environ Saf ; 267: 115647, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37918332

RESUMO

Until now, the specific pathogenesis of silicosis is not clear. Exosomal miRNAs, as a newly discovered intercellular communication medium, play an important role in many diseases. Our previous research found that serum exosomal miR125a-5p was increased in silicosis patients by miRNAs high-throughput sequencing. TRAF6, is a target gene of miR125a-5p, which is involved in T-cell differentiation. Furthermore, results from animal study indicate that knockdown of miR-125a-5p can regulate T lymphocyte subsets and significantly reduce pulmonary fibrosis by targeting TRAF6. However, the level of serum exosomal miR125a-5p in silicosis patients has not been reported, the role of macrophages-secreted exosomal miR-125a-5p in regulating T cell differentiation to promote fibroblast transdifferentiation (FMT) remains unknown. In this study, the levels of serum exosomal miR125a-5p and serum TGF-ß1, IL-17A, IL-4 cytokines in silicosis patients were elevated, with the progression of silicosis, the level of serum exosomal miR125a-5p and serum IL-4 were increased; thus, the serum level of IFN-γ was negatively correlated with the progression of silicosis. In vitro, the levels of miR125a-5p in macrophages, exosomes, and T cells stimulated by silica were significantly increased. When the mimic was transfected into T cells, which directly suppressed TRAF6 and caused the imbalance of T cells differentiation, induced FMT. To sum up, these results indicate that exosomal miR-125a-5p may by targeting TRAF6 of T cells, induces the activation and apoptosis of T cells and the remodeling of Th1/Th2 and Th17/Tregs distribution, ultimately promotes FMT. Suggesting that exosomal miR-125a-5p may be a potential therapeutic target for silicosis.


Assuntos
MicroRNAs , Silicose , Animais , Humanos , Linfócitos T Reguladores , Dióxido de Silício/toxicidade , Transdiferenciação Celular , Interleucina-4 , Fator 6 Associado a Receptor de TNF , Células Th17 , Silicose/genética , MicroRNAs/genética , Fibroblastos
10.
Toxicol Appl Pharmacol ; 441: 115977, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35288145

RESUMO

The main clinical manifestations are pulmonary fibrosis, silicosis, is one of the most common types of pneumoconiosis, and its pathogenesis is still unclear. The proliferation and transdifferentiation of fibroblasts are considered to be the key link leading to pulmonary fibrosis. Type II alveolar epithelial cells can be transformed into lung fibroblasts through epithelial-mesenchymal transition (EMT) to promote lung fibrosis. Involved in the EMT process of a variety of cancers, lncRNA UCA1 (UCA1) has been shown to competitively adsorb miR-204-5p, and play an effect on the downstream target gene E-box binding zinc finger protein 1 (ZEB1), thereby promoting EMT to facilitate the invasion and migration of cancer cells. This is an important potential intervention target that affects the process of EMT, but it has not been reported in the study of EMT related to silicosis. Therefore, this study established a SiO2 dust-treated mouse silicosis model and an in vitro EMT model of A549 cells to observe the changes and effects of UCA1 and miR-204-5p, and intervene on the two respectively. The results showed that the EMT process existed in the aforementioned models, while UCA1 was upregulated in the in vitro model. Double luciferase reporter assay demonstrated the targeted binding of UCA1 and miR-204-5p. Silencing UCA1 can up-regulate the expression of miR-204-5p and reduce the level of ZEB1, thus inhibiting EMT process, while intervention of miR-204-5p can change the level of ZEB1 and regulate EMT. Therefore, UCA1 may release its target gene ZEB1 through competitive adsorption of miR-204-5p to regulate EMT process.


Assuntos
MicroRNAs , Fibrose Pulmonar , RNA Longo não Codificante , Silicose , Células A549 , Adsorção , Animais , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Dióxido de Silício/metabolismo , Silicose/genética , Silicose/patologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
11.
Exp Cell Res ; 409(2): 112932, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34800540

RESUMO

Ferroptosis is a mode of cell death dependent on iron ions, which is mainly induced by the decrease of the biological activity of glutathione peroxidase or the accumulation of lipid peroxidation and reactive oxygen species (ROS). It is significantly different from autophagy and other forms of cell death in terms of cell morphology and biochemistry. The exact mechanisms of ferroptosis are not clear. More and more studies have shown that various tumor diseases and nervous system diseases are closely related to ferroptosis. The occurrence and development of related diseases can be tolerated by stimulating or inhibiting the occurrence of ferroptosis. Therefore, ferroptosis has occupied a very important position in recent years. This article reviews the discovery process, characteristics, mechanisms, inducers, inhibitors of ferroptosis and its related clinical applications to lay a foundation for follow-up researchers to study ferroptosis and provide some reference value.


Assuntos
Autofagia , Ferroptose , Ferro/metabolismo , Neoplasias/patologia , Doenças do Sistema Nervoso/patologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Neoplasias/metabolismo , Doenças do Sistema Nervoso/metabolismo
12.
J Cell Mol Med ; 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34076355

RESUMO

Silicosis is a devastating occupational disease caused by long-term inhalation of silica particles, inducing irreversible lung damage and affecting lung function, without effective treatment. Mesenchymal stem cells (MSCs) are a heterogeneous subset of adult stem cells that exhibit excellent self-renewal capacity, multi-lineage differentiation potential and immunomodulatory properties. The aim of this study was to explore the effect of bone marrow-derived mesenchymal stem cells (BMSCs) in a silica-induced rat model of pulmonary fibrosis. The rats were treated with BMSCs on days 14, 28 and 42 after perfusion with silica. Histological examination and hydroxyproline assays showed that BMSCs alleviated silica-induced pulmonary fibrosis in rats. Results from ELISA and qRT-PCR indicated that BMSCs inhibited the expression of inflammatory cytokines TNF-α, IL-1ß and IL-6 in lung tissues and bronchoalveolar lavage fluid of rats exposed to silica particles. We also performed qRT-PCR, Western blot and immunohistochemistry to examine epithelial-mesenchymal transition (EMT)-related indicators and demonstrated that BMSCs up-regulate E-cadherin and down-regulate vimentin and extracellular matrix (ECM) components such as fibronectin and collagen Ⅰ. Additionally, BMSCs inhibited the silica-induced increase in TGF-ß1, p-Smad2 and p-Smad3 and decrease in Smad7. These results suggested that BMSCs can inhibit inflammation and reverse EMT through the inhibition of the TGF-ß/Smad signalling pathway to exhibit an anti-fibrotic effect in the rat silicosis model. Our study provides a new and meaningful perspective for silicosis treatment strategies.

13.
Toxicol Appl Pharmacol ; 422: 115559, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33961903

RESUMO

The occurrence and development of silicosis is related to the interaction of multiple cells through signal transmission caused by silica dust. Including inflammatory changes reduced by macrophages and phenotypic transdifferentiation reduced by lung fibroblasts. As a communication medium between cells, exosomes have become a hot research topic. To explore the role of exosomal proteins in the occurrence and development of silicosis and the possible intervention targets, this study conducted proteomic analysis of macrophage-derived exosomes induced by silica, to identify specific proteins for intervention. In this study, we used proteomic analysis to screen exosomal protein profiles from the RAW264.7 macrophages exposed to silica. A total of 291 proteins were differentially expressed, of which 178 were upregulated and 113 were downregulated. By performing functional annotation and analysis of the differentially expressed proteins, we identified proteins SPP1, HMGB3, and HNRNPAB, which were consistent with the proteomics analysis. The involvement of SPP1 protein in fibrosis was studied further. Knocking down the expression of SPP1 in exosomes resulted in a decrease in fibrosis-related indicators. These results help to understand that exosomal protein can mediate cell communication and play a key role in the transition from fibroblasts to myofibroblasts. Further, this study also provided strategies and scientific basis for future studies on the intervention of silicosis.


Assuntos
Comunicação Celular , Transdiferenciação Celular , Exossomos/efeitos dos fármacos , Fibroblastos/metabolismo , Macrófagos/efeitos dos fármacos , Osteopontina/metabolismo , Dióxido de Silício/toxicidade , Silicose/metabolismo , Animais , Proliferação de Células , Exossomos/genética , Exossomos/metabolismo , Fibroblastos/patologia , Macrófagos/metabolismo , Camundongos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Células NIH 3T3 , Osteopontina/genética , Proteoma , Proteômica , Células RAW 264.7 , Silicose/genética , Silicose/patologia
14.
Ecotoxicol Environ Saf ; 216: 112181, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33848736

RESUMO

This study aimed to investigate the effect of bone marrow-derived mesenchymal stem cells (BMSCs) on silica-induced lung fibrosis in a rat model. Thirty SD rats were randomly divided into three groups: control group, silica group, and BMSC group (n = 10 rats per group). BMSCs were injected successively into rats on the 14th, 28th, and 42nd days after silica exposure. All rats were sacrificed 56 days after silica exposure. We detected the pathological and fibrotic changes, apoptosis, autophagy, and pyroptosis in their lung tissue by histopathological examination, hydroxyproline content assays, real-time quantitative polymerase chain reactions, western blot assays, immunohistochemistry staining, immunofluorescence staining, and enzyme-linked immunosorbent assays. We found that BMSCs significantly relieved lung inflammatory infiltrates, collagen deposition, hydroxyproline content, and the mRNA and protein levels of collagen 1 and fibronectin. Compared to the silica group, in the BMSC group, apoptosis-associated proteins, including cleaved caspase 3 and Bax, were significantly downregulated, and Bcl-2/Bax was significantly upregulated; pyroptosis-related proteins, including Nlrp3, cleaved caspase 1, IL-1ß, and IL-18, were significantly reduced. However, the BMSCs had no significant impact on autophagy-related proteins, including Beclin 1, P62, and LC3. In summary, BMSCs protected lung tissue against severe fibrosis by inhibiting apoptosis and pyroptosis but not autophagy.

15.
Ecotoxicol Environ Saf ; 220: 112331, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34015634

RESUMO

Exposure to sensitizer has been suggested to be hazardous to human health, evaluation the sensitization of sensitizer is particularly important and urgently needed. Dendritic cells (DCs) exert an irreplaceable function in immunity, and the T cell receptor (TCR) repertoire is key to ensuring immune response to foreign antigens. We hypothesized that a co-culture model of human monocyte-derived dendritic cells (Mo-DCs) and T cells could be employed to evaluate the sensitization of DNCB. An experimental model of DNCB-induced sensitization in rat was employed to examine alterations of cluster of differentiation CD103+ DCs and T cells. A co-cultured model of Mo-DCs and T cells was developed in vitro to assess the sensitization of DNCB through the phenotypic and functional alterations of Mo-DCs, as well as the TCR repertoire. We found that the CD103+ DCs phenotype and T-helper (Th) cells polarization altered in sensitization rats. In vitro, phenotypic alteration of Mo-DCs caused by DNCB were consistent with in vivo results, antigen uptake capacity of Mo-DCs diminished and capacity of Mo-DCs to prime T cell increased. Clones of the TCR repertoire and the diversity of TCR repertoire were enhanced, changes were noted in the usage of variable, joining, and variable-joining gene combinations. DNCB exposure potentiated alterations and characteristics of Mo-DCs and the TCR repertoire in a co-culture model. Such changes provided innovative ideas for evaluating sensitization of DNCB.


Assuntos
Células Dendríticas/efeitos dos fármacos , Dinitroclorobenzeno/toxicidade , Irritantes/toxicidade , Linfócitos T/efeitos dos fármacos , Adulto , Animais , Técnicas de Cocultura , Feminino , Humanos , Masculino , Monócitos/citologia , Ratos , Ratos Sprague-Dawley , Adulto Jovem
16.
J Cell Mol Med ; 24(20): 12219-12224, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32929850

RESUMO

Silicosis is an incurable occupational disease, and its pathological feature is diffuse pulmonary fibrosis. Pulmonary epithelial-mesenchymal transition (EMT) is one of the important events in the pathogenesis of silicosis. Previous studies found that abnormal expression of various microRNAs (miRNAs) involved in the development of lung fibrosis. However, their roles in silicosis have not been elucidated. To research the biological effects of miR-34a in EMT process in silica-induced lung fibrosis, we established the silicosis model in mouse and miR-34a intervention in a cell model of TGF-ß1 stimulated lung epithelial cells (A549). The results showed that miR-34a expression was down-regulated in the fibrotic lung tissue after silica treatment, and it was similarly expressed in A549 cells stimulated by TGF-ß1. Meanwhile, silica-induced EMT process can increase expression of two mesenchymal markers, α-SMA and vimentin. Furthermore, overexpression miR-34a markedly inhibited EMT stimulated by TGF-ß1. Mechanistically, SMAD4 was identified as the target of miR-34a. SMAD4 levels decreased in mRNA and protein levels in A549 cells upon miR-34a overexpression. In addition, the knockdown of SMAD4 blocked the EMT process. Taken together, miR-34a regulated EMT, which might be partially realized by targeting SMAD4. Our data might provide new insight into treatment targets for silica-induced pulmonary fibrosis.


Assuntos
Transição Epitelial-Mesenquimal/genética , MicroRNAs/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Proteína Smad4/metabolismo , Células A549 , Animais , Regulação para Baixo/genética , Inativação Gênica , Humanos , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Modelos Biológicos , Fibrose Pulmonar/patologia , Dióxido de Silício
17.
Ecotoxicol Environ Saf ; 193: 110364, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32114243

RESUMO

Silicosis is a fatal fibrotic lung disease caused by long-term silica particle exposure, in which pulmonary macrophages play an important role. However, the relationship between macrophage polarization and silicosis remains unclear. We established an experimental silicosis mouse model to investigate macrophage polarization during silicosis development. C57BL/c mice were exposed to silica by intra-tracheal instillation and sacrificed at different time points. Lung tissues and bronchoalveolar lavage fluid were collected for flow cytometry, quantitative reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assays, western blotting, and histology examinations. The polarization of pulmonary macrophages was dysregulated during silicosis development. In the early stage of silicosis, M1 macrophages were induced and played a leading role in eliciting inflammatory; in the late stage, M2 macrophages were induced to promote tissue repair. Levels of several cytokines in lung tissue microenvironment changed with macrophage polarization. Inflammatory cytokines such as tumor necrosis factor-α and interleukin (IL)-1ß and IL-6 were upregulated in the inflammation stage, while the anti-inflammatory cytokine IL-10 was upregulated in the fibrosis stage. Furthermore, we found that STAT (signal transducer and activator of transcription) and IRF (interferon regulatory factor) signaling pathway were involved in the regulation of macrophage polarization in silicosis. In summary, macrophage polarization is closely related to the occurrence and development of silicosis and may be a key point for further elucidating silicosis pathogenesis.


Assuntos
Macrófagos Alveolares/efeitos dos fármacos , Silicose/imunologia , Animais , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Fatores Reguladores de Interferon/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/metabolismo , Fatores de Transcrição STAT/metabolismo , Dióxido de Silício , Silicose/metabolismo , Silicose/patologia
18.
Ecotoxicol Environ Saf ; 192: 110253, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32059163

RESUMO

Silica particles can cause a systemic disease in workers termed lung silicosis, characterized by diffuse fibrosis. The development of lung silicosis involves various signaling pathway networks comprising numerous cell types and cytokines. As an important medium for communication between cells, exosomes have emerged as a hot research topic; however, the role of exosomal microRNAs (miRNAs) in silicosis remains unclear. In this study, we conducted high-throughput sequencing to generate exosomal miRNAs profiles from macrophages that were either exposed to silica or not. A total of 298 miRNAs were differentially expressed, with 155 up-regulated and 143 down-regulated. Highly conserved differentially expressed miRNAs were functionally annotated and analyzed to predict target genes. Among target interactions associated with the TGF-ß signaling pathway, miR-125a-5p and its putative target gene, Smurf1, were subjected to further research. As expected, levels of miR-125a-5p were upregulated in human serous exosomes and vitro, and inhibit the exosomal miR-125a-5p suppressed the expression of the fibrosis hallmarks. Besides, high levels of the miRNA led to upregulation of smooth muscle actin alpha and repression of Smurf1 in NIH-3T3 and MRC-5 cells. ID1 and SMAD1, downstream of TGF-ß signaling, were upregulated, indicating potential activation of this signaling pathway. These results contribute to understanding of the intercellular communication mediated by exosomal miRNAs and its critical role in fibroblast to myofibroblast transition and silicosis.


Assuntos
Transdiferenciação Celular/efeitos dos fármacos , Poluentes Ambientais/farmacologia , Exossomos/genética , Fibroblastos/metabolismo , Macrófagos/efeitos dos fármacos , MicroRNAs/metabolismo , Dióxido de Silício/farmacologia , Animais , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Macrófagos/metabolismo , Camundongos , Células NIH 3T3 , Análise de Sequência de RNA , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases , Regulação para Cima
20.
Small ; 14(15): e1704008, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29516679

RESUMO

Inhaling a dangerous amount of nanoparticles leads to pulmonary inflammatory and immune disorders, which integrates several kinds of cells. Exosomes are suggested to play a crucial role in intercellular communication via miRNA transmission. To investigate the role of exosomal miRNA in nanoparticle phagocytosis, a total of 54 pneumoconiosis patients along with 100 healthy controls are recruited, exosomes derived from their venous blood are collected, and then exosomal miRNAs are profiled with high-throughput sequencing technology. miRNAs which are differentially expressed are used to predict target genes and conduct functional annotation. Interactions between miRNA hsa-let-7a-5p, hsa-let-7i-5p, and their cotarget gene WASL are found that can affect nanoparticle phagocytosis. The follow-up analysis of gene structure, tissue specificity, and miRNA-target gene regulatory mode supports the findings. Specially, the assumption is further confirmed via a series of cellular experiments, and the fibroblast transdifferentiate rate that is used as an indicator of nanoparticle phagocytosis decreased when elevating miRNA expression level. Thus, data in this study indicate that downregulation of miRNA hsa-let-7a-5p and hsa-let-7i-5p contributes to WASL elevation, promoting WASL and VASP complex formation, which is necessary for initiating Arp2/3 induced phagocytosis.


Assuntos
Exossomos/metabolismo , MicroRNAs/metabolismo , Nanopartículas/metabolismo , Adulto , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Fagócitos/metabolismo , Pneumoconiose/sangue , Pneumoconiose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA