Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ScientificWorldJournal ; 2013: 489121, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24453865

RESUMO

The tracking initiation problem is examined in the context of autonomous bearings-only-tracking (BOT) of a single appearing/disappearing target in the presence of clutter measurements. In general, this problem suffers from a combinatorial explosion in the number of potential tracks resulted from the uncertainty in the linkage between the target and the measurement (a.k.a the data association problem). In addition, the nonlinear measurements lead to a non-Gaussian posterior probability density function (pdf) in the optimal Bayesian sequential estimation framework. The consequence of this nonlinear/non-Gaussian context is the absence of a closed-form solution. This paper models the linkage uncertainty and the nonlinear/non-Gaussian estimation problem jointly with solid Bayesian formalism. A particle filtering (PF) algorithm is derived for estimating the model's parameters in a sequential manner. Numerical results show that the proposed solution provides a significant benefit over the most commonly used methods, IPDA and IMMPDA. The posterior Cramér-Rao bounds are also involved for performance evaluation.


Assuntos
Matemática/métodos , Teorema de Bayes , Cadeias de Markov , Modelos Teóricos , Distribuição Normal , Processamento de Sinais Assistido por Computador , Incerteza
2.
Sensors (Basel) ; 13(4): 4272-88, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23539031

RESUMO

A unitary transformation-based algorithm is proposed for two-dimensional (2-D) direction-of-arrival (DOA) estimation of coherent signals. The problem is solved by reorganizing the covariance matrix into a block Hankel one for decorrelation first and then reconstructing a new matrix to facilitate the unitary transformation. By multiplying unitary matrices, eigenvalue decomposition and singular value decomposition are both transformed into real-valued, so that the computational complexity can be reduced significantly. In addition, a fast and computationally attractive realization of the 2-D unitary transformation is given by making a Kronecker product of the 1-D matrices. Compared with the existing 2-D algorithms, our scheme is more efficient in computation and less restrictive on the array geometry. The processing of the received data matrix before unitary transformation combines the estimation of signal parameters via rotational invariance techniques (ESPRIT)-Like method and the forward-backward averaging, which can decorrelate the impinging signalsmore thoroughly. Simulation results and computational order analysis are presented to verify the validity and effectiveness of the proposed algorithm.

3.
Sensors (Basel) ; 12(4): 4730-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666055

RESUMO

In this paper, we focus on the design of adaptive receivers for nonhomogeneous scenarios. More precisely, at the design stage we assume a mismatch between the covariance matrix of the noise in the cell under test and that of secondary data. Under the above assumption, we show that the Wald test is the adaptive matched filter, while the Rao test coincides with the receiver obtained by using the Rao test design criterion in homogeneous environment, hence providing a theoretical explanation of the enhanced selectivity of this receiver.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA