Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Pharm Res ; 41(5): 863-875, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605261

RESUMO

OBJECTIVE: This study aimed to improve the efficiency of pharmacotherapy for CNS diseases by optimizing the ability of drug molecules to penetrate the Blood-Brain Barrier (BBB). METHODS: We established qualitative and quantitative databases of the ADME properties of drugs and derived characteristic features of compounds with efficient BBB penetration. Using these insights, we developed four machine learning models to predict a drug's BBB permeability by assessing ADME properties and molecular topology. We then validated the models using the B3DB database. For acyclovir and ceftriaxone, we modified the Hydrogen Bond Donors and Acceptors, and evaluated the BBB permeability using the predictive model. RESULTS: The machine learning models performed well in predicting BBB permeability on both internal and external validation sets. Reducing the number of Hydrogen Bond Donors and Acceptors generally improves BBB permeability. Modification only enhanced BBB penetration in the case of acyclovir and not ceftriaxone. CONCLUSIONS: The machine learning models developed can accurately predict BBB permeability, and many drug molecules are likely to have increased BBB penetration if the number of Hydrogen Bond Donors and Acceptors are reduced. These findings suggest that molecular modifications can enhance the efficacy of CNS drugs and provide practical strategies for drug design and development. This is particularly relevant for improving drug penetration of the BBB.


Assuntos
Aciclovir , Barreira Hematoencefálica , Aprendizado de Máquina , Permeabilidade , Barreira Hematoencefálica/metabolismo , Humanos , Aciclovir/farmacocinética , Ligação de Hidrogênio , Ceftriaxona/farmacocinética , Fármacos do Sistema Nervoso Central/farmacocinética , Fármacos do Sistema Nervoso Central/química , Fármacos do Sistema Nervoso Central/metabolismo , Desenho de Fármacos
2.
Drug Chem Toxicol ; : 1-13, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38938098

RESUMO

It is well-known that the hepatotoxicity of drugs can significantly influence their clinical use. Despite their effective therapeutic efficacy, many drugs are severely limited in clinical applications due to significant hepatotoxicity. In response, researchers have created several machine learning-based hepatotoxicity prediction models for use in drug discovery and development. Researchers aim to predict the potential hepatotoxicity of drugs to enhance their utility. However, current hepatotoxicity prediction models often suffer from being unverified, and they fail to capture the detailed toxicological structures of predicted hepatotoxic compounds. Using the 56 chemical constituents of Gardenia jasminoides as examples, we validated the trained hepatotoxicity prediction model through literature reviews, principal component analysis (PCA), and structural comparison methods. Ultimately, we successfully developed a model with strong predictive performance and conducted visual validation. Interestingly, we discovered that the predicted hepatotoxic chemical constituents of Gardenia possess both toxic and therapeutic effects, which are likely dose-dependent. This discovery greatly contributes to our understanding of the dual nature of drug-induced hepatotoxicity.

3.
Molecules ; 28(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37959722

RESUMO

OBJECTIVE: Our study aims to assess Ardisia japonica (AJ)'s anti-blood-stasis effect and its underlying action mechanisms. METHODS: The primary components of AJ were determined using liquid chromatography-mass spectrometry (LC-MS). The blood stasis model was used to investigate the anti-blood-stasis effect of AJ extract. The underlying mechanisms of AJ against blood stasis were investigated via network pharmacology, molecular docking, and plasma non-targeted metabolomics. RESULTS: In total, 94 compounds were identified from an aqueous extract of AJ, including terpenoids, phenylpropanoids, alkaloids, and fatty acyl compounds. In rats with blood stasis, AJ reduced the area of stasis, decreased the inflammatory reaction in the liver and lungs of rats, lowered the plasma viscosity, increased the index of erythrocyte deformability, and decreased the index of erythrocyte aggregation, suggesting that AJ has an anti-blood-stasis effect. Different metabolites were identified via plasma untargeted metabolomics, and it was found that AJ exerts its anti-blood-stasis effect by reducing inflammatory responses through the cysteine and methionine metabolism, linolenic acid metabolism, and sphingolipid metabolism. For the effect of AJ on blood stasis syndrome, the main active ingredients predicted via network pharmacology include sinensetin, galanin, isorhamnetin, kaempferol, wogonin, quercetin, and bergenin, and their targets were TP53, HSP90AA1, VEGFA, AKT1, EGFR, and PIK3CA that were mainly enriched in the PI3K/AKT and MAPK signaling pathways, which modulate the inflammatory response. Molecular docking was also performed, and the binding energies of these seven compounds to six proteins were less than -5, indicating that the chemical components bind to the target proteins. CONCLUSIONS: This study suggests AJ effectively prevents blood stasis by reducing inflammation.


Assuntos
Ardisia , Medicamentos de Ervas Chinesas , Ratos , Animais , Farmacologia em Rede , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Metabolômica/métodos , Medicamentos de Ervas Chinesas/farmacologia , Inflamação/tratamento farmacológico
4.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4893-4901, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802831

RESUMO

Yiyi Fuzi Baijiang Powder(YFBP), originating from Synopsis of the Golden Chamber, is a classic prescription composed of Coicis Semen, Aconiti Lateralis Radix Praeparata, and Patriniae Herba for the treatment of abscesses and pus discharge. This article presented a systematic analysis of the clinical application of YFBP, including the indicated diseases, the number of cases, efficacy, dosage, administration methods, and compatibility with other drugs. The analysis reveals that YFBP has a wide range of clinical applications. It is commonly used, often with modifications or in combination with western medicine, for diseases in the fields of gastroente-rology, gynecology, urology, dermatology, and others. And most of the Traditional Chinese Medicine(TCM) evidence involved in these diseases are damp-heat evudence. The prescription shows rich variations in clinical administration methods, and most of which are the treatment of aqueous decoction of it. The therapeutic effect is also significant, and the total effective rate of clinical treatment is re-latively high. Additionally, this article summarized the pharmacological research on YFBP and found that it possessed various pharmacological effects, including anti-inflammatory, antioxidant, anticancer, and immune-modulating properties. Finally, correlation analysis was conducted on the main diseases, TCM types, prescription doses, pharmacological effects and action targets of YFBP, which to show the relationship between these five aspects in a visual form, reflecting the relationship between its clinical application and modern pharmacological effects. These findings provide a reference basis for further development and research on YFBP.


Assuntos
Aconitum , Diterpenos , Medicamentos de Ervas Chinesas , Pós , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa
5.
Acta Pharmacol Sin ; 43(4): 1046-1058, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34326484

RESUMO

Heat shock protein 90 (HSP90) has been recognized as a crucial target in cancer cells. However, various toxic reactions targeting the ATP binding site of HSP90 may not be the best choice for HSP90 inhibitors. In this paper, an ellagic acid derivative, namely, okicamelliaside (OCS), with antitumor effects was found. To identify potential anti-cancer mechanisms, an OCS photosensitive probe was applied to target fishing and tracing. Chemical proteomics and protein-drug interaction experiments have shown that HSP90 is a key target for OCS, with a strong binding affinity (KD = 6.45 µM). Mutation analysis of the target protein and molecular dynamics simulation revealed that OCS could competitively act on the key Glu-47 site at the N-terminal chaperone pocket of HSP90, where the co-chaperone CDC37 binds to HSP90, affect its stability and reduce the ∆Gbind of HSP90-CDC37. It was demonstrated that OCS destroys the protein-protein interactions of HSP90-CDC37; selectively affects downstream kinase client proteins of HSP90, including CDK4, P-AKT473, and P-ERK1/2; and exerts antitumor effects on A549 cells. Furthermore, tumor xenograft experiments demonstrated high antitumor activity and low toxicity of OCS in the same way. Our findings identified a novel N-terminal chaperone pocket natural inhibitor of HSP90, that is, OCS, which selectively inhibits the formation of the HSP90-CDC37 protein complex, and provided further insight into HSP90 inhibitors for anti-cancer candidate drugs.


Assuntos
Chaperoninas , Ácido Elágico , Proteínas de Ciclo Celular/genética , Chaperoninas/química , Chaperoninas/genética , Chaperoninas/metabolismo , Ácido Elágico/análogos & derivados , Glucosídeos , Proteínas de Choque Térmico HSP90 , Humanos , Ligação Proteica
6.
J Sep Sci ; 45(18): 3443-3458, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35932223

RESUMO

In this study, we proposed an integrated analytical strategy for the rapid and comprehensive discovery of a specific class of secoiridoid glycosides from a Yao medicine, Jasminum pentaneurum Hand.-Mazz. The strategy fully took advantage of the accuracy of ultra-performance liquid chromatography coupled with quadruple time-of-flight mass spectrometry, and the efficiency of diagnostic ion filtering and neutral loss filtering. Twenty-four secoiridoid glycosides, including three known ones and 21 unreported ones, were rapidly discovered and characterized based on the detail analysis of their mass spectrometry data. Particularly, 10-syringicoyl-ligustroside (18) was isolated under the guidance of mass spectrometry analysis. Its chemical structure was elucidated on the basis of extensive spectroscopic data analysis, and absolute configuration was further elucidated by comparison of its experimental and electronic circular dichroism spectra. Furthermore, the mass spectrometry data of 18 was analyzed and the corresponding results indicated that its fragment pathway was fully consistent with the applied diagnostic ion filtering and neutral loss filtering rules, and thus the precision and efficiency of the integrated strategy were validated. The result demonstrated that the proposed integrated strategy could serve as a rapid, accurate, and comprehensive targeted components discovery method to effectively screen out those ingredients of interest from the complex herbal medicines.


Assuntos
Medicamentos de Ervas Chinesas , Jasminum , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Medicamentos de Ervas Chinesas/análise , Glicosídeos Iridoides/análise , Espectrometria de Massas em Tandem/métodos
7.
Pharm Biol ; 60(1): 915-930, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35587342

RESUMO

CONTEXT: Gnetum montanum Markgr. (Gnetaceae) is used to treat rheumatic arthralgia and bruises in the clinic. OBJECTIVE: To exam the activity and mechanism of G. montanum extract (GME) against colon cancer cells SW480. MATERIALS AND METHODS: The anti-proliferative activity of GME (0-120 µg/mL) on SW480 cells was determined using MTS assay at 24, 48, and 72 h. The in vitro activity of GME (0-120 µg/mL) on SW480 cells was investigated using flow cytometry and western blotting analysis. The in vivo activity of GME was evaluated using xenograft tumour model of zebrafish and nude mice. The chemical composition of GME was detected by using HPLC-MS/MS. RESULTS: The IC50 value SW480 cells viability by GME were 126.50, 78.25, and 50.77 µg/mL, respectively, for 24, 48, and 72 h. The experiments showed that apoptotic cells and G2/M phase cells increased from 20.81 to 61.53% (p < 0.01) and 25.76 to 34.93% with 120 µg/mL GME, respectively. GME also down-regulated the protein expression of P-AKT, P-GSK-3ß, P-PDK1, P-c-Raf, caspase-3, and Bcl-2, and up-regulated the expression cleaved caspase-3, cleaved PARP, and Bax. In vivo study found that GME can significantly inhibit the growth and migration of SW480 cells in xenograft zebrafish. GME reduced the nude mice tumour weight to approximately 32.19% at 28 mg/kg/day and to 53.17% (p < 0.01) at 56 mg/kg/day. Forty-two compounds were identified from the GME. DISCUSSION AND CONCLUSIONS: GME has a significant antitumor effect on colon cancer cells SW480, and it has the potential to be developed as an anticancer agent.


Assuntos
Neoplasias do Colo , Gnetum , Animais , Apoptose , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Glicogênio Sintase Quinase 3 beta , Gnetum/metabolismo , Humanos , Camundongos , Camundongos Nus , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espectrometria de Massas em Tandem , Peixe-Zebra/metabolismo
8.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1739-1753, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35534245

RESUMO

Curcuma kwangsiensis root tuber is a widely used genuine medicinal material in Guangxi, with the main active components of terpenoids and curcumins. It has the effects of promoting blood circulation to relieve pain, moving Qi to relieve depression, clearing heart and cooling blood, promoting gallbladder function and anti-icterus. Modern research has proved its functions in liver protection, anti-tumor, anti-oxidation, blood lipid reduction and immunosuppression. Considering the research progress of C. kwangsiensis root tubers and the core concept of quality marker(Q-marker), we predicted the Q-markers of C. kwangsiensis root tubers from plant phylogeny, chemical component specificity, traditional pharmacodynamic properties, new pharmacodynamic uses, chemical component measurability, processing methods, compatibility, and components migrating to blood. Curcumin, curcumol, curcumadiol, curcumenol, curdione, germacrone, and ß-elemene may be the possible Q-markers. Based on the predicted Q-markers, the mechanisms of the liver-protecting and anti-tumor activities of C. kwangsiensis root tubers were analyzed. AKT1, IL6, EGFR, and STAT3 were identified as the key targets, and neuroactive ligand-receptor interaction signaling pathway, nitrogen metabolism pathway, cancer pathway, and hepatitis B pathway were the major involved pathways. This review provides a basis for the quality evaluation and product development of C. kwangsiensis root tubers and gives insights into the research on Chinese medicinal materials.


Assuntos
Curcuma , Neoplasias , China , Curcuma/química , Humanos , Fígado , Terpenos/farmacologia
9.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4765-4777, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36164884

RESUMO

Epidemic diseases have caused huge harm to the society. Traditional Chinese medicine(TCM) has made great contributions to the prevention and treatment of them. It is of great reference value for fighting diseases and developing drugs to explore the medication law and mechanism of TCM under TCM theory. In this study, the relationship between the TCM theory of cold pestilence and modern epidemic diseases was investigated. Particularly, the the relationship of coronavirus disease 2019(COVID-19), severe acute respiratory syndrome(SARS), and influenza A(H1 N1) with the cold pestilence was identified and analyzed. The roles of TCM theory of cold pestilence in preventing and treating modern epidemic diseases were discussed. Then, through data mining and textual research, prescriptions for the treatment of cold pestilence were collected from major databases and relevant ancient books, and their medication laws were examined through analysis of high-frequency medicinals and medicinal pairs, association rules analysis, and cluster analysis. For example, the prescriptions with high confidence levels were identified: "Glycyrrhizae Radix et Rhizoma-Bupleuri Radix-Paeoniae Radix Alba" "Glycyrrhizae Radix et Rhizoma-Pinelliae Rhizoma-Bupleuri Radix", and TCM treatment methods with them were analyzed by clustering analysis to yield the medicinal combinations: "Zingiberis Rhizoma-Aconiti Lateralis Radix Praeparata-Ginseng Radix et Rhizoma" "Poria-Atractylodis Macrocephalae Rhizoma" "Cinnamomi Ramulus-Asari Radix et Rhizoma" "Citri Reticulatae Pericarpium-Perillae Folium" "Pinelliae Rhizoma-Magnoliae Officinalis Cortex-Atractylodis Rhizoma" "Paeoniae Radix Alba-Angelicae Sinensis Radix-Glycyrrhizae Radix et Rhizoma-Bupleuri Radix-Scutellariae Radix-Rhizoma Zingiberis Recens" "Ephedrae Herba-Armeniacae Semen Amarum-Gypsum Fibrosum" "Chuanxiong Rhizoma-Notopterygii Rhizoma et Radix-Angelicae Dahuricae Radix-Platycodonis Radix-Saposhnikoviae Radix". Then, according to the medication law for cold pestilence, the antiviral active components of medium-frequency and high-frequency medicinals were retrieved. It was found that these components exerted the antiviral effect by inhibiting virus replication, regulating virus proteins and antiviral signals, and suppressing protease activity. Based on network pharmacology, the mechanisms of the medicinals against severe acute respiratory syndrome coronavirus(SARS-CoV), 2019 novel coronavirus(2019-nCoV), and H1 N1 virus were explored. It was determined that the key targets were tumor necrosis factor(TNF), endothelial growth factor A(VEGFA), serum creatinine(SRC), epidermal growth factor receptor(EGFR), matrix metalloproteinase 9(MMP9), mitogen-activated protein kinase 14(MAPK14), and prostaglandin-endoperoxide synthase 2(PTGS2), which were involved the mitogen-activated protein kinase(MAPK) pathway, advanced glycation end-products(AGE)-receptor for AGE(RAGE) pathway, COVID-19 pathway, and mTOR pathway. This paper elucidated the medication law and mechanism of TCM for the prevention and treatment of epidemic diseases under the guidance of TCM theory of cold pestilence, in order to build a bridge between the theory and modern epidemic diseases and provide reference TCM methods for the prevention and treatment of modern epidemic diseases and ideas for the application of data mining to TCM treatment of modern diseases.


Assuntos
Aconitum , Controle de Doenças Transmissíveis , Doenças Transmissíveis , Medicamentos de Ervas Chinesas , Epidemias , Medicina Tradicional Chinesa , Pinellia , Antivirais , COVID-19/epidemiologia , Sulfato de Cálcio , Doenças Transmissíveis/tratamento farmacológico , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/virologia , Creatinina , Ciclo-Oxigenase 2 , Medicamentos de Ervas Chinesas/uso terapêutico , Fatores de Crescimento Endotelial , Epidemias/prevenção & controle , Receptores ErbB , Humanos , Metaloproteinase 9 da Matriz , Proteína Quinase 14 Ativada por Mitógeno , SARS-CoV-2 , Serina-Treonina Quinases TOR , Fatores de Necrose Tumoral , Tratamento Farmacológico da COVID-19
10.
Acta Pharmacol Sin ; 42(7): 1101-1110, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33028983

RESUMO

Alcoholic liver disease (ALD) is one of the pathogenic factors of chronic liver disease with the highest clinical morbidity worldwide. Ursolic acid (UA), a pentacyclic terpenoid carboxylic acid, has shown many health benefits including antioxidative, anti-inflammatory, anticancer, and hepatoprotective activities. We previously found that UA was metabolized in vivo into epoxy-modified UA containing an epoxy electrophilic group and had the potential to react with nucleophilic groups. In this study we prepared an alkynyl-modified UA (AM-UA) probe for tracing and capturing the target protein of UA from liver in mice, then investigated the mode by which UA bound to its target in vivo. By conducting proteome identification and bioinformatics analysis, we identified caspase-3 (CASP3) as the primary target protein of UA associated with liver protection. Molecule docking analysis showed that the epoxy group of the UA metabolite reacted with Cys-163 of CASP3, forming a covalent bond with CASP3. The binding mode of the UA metabolites (UA, CM-UA, and EM-UA) was verified by biochemical evaluation, demonstrating that the epoxy group produced by metabolism played an important role in the inhibition of CASP3. In alcohol-treated HepG2 cells, pretreatment with the UA metabolite (10 µM) irreversibly inhibited CASP3 activities, and subsequently decreased the cleavage of PARP and cell apoptosis. Finally, pre-administration of UA (20-80 mg· kg-1 per day, ig, for 1 week) dose-dependently alleviated alcohol-induced liver injury in mice mainly via the inhibition of CASP3. In conclusion, this study demonstrates that UA is a valuable lead compound for the treatment of ALD.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Inibidores de Caspase/uso terapêutico , Hepatopatias Alcoólicas/tratamento farmacológico , Fígado/efeitos dos fármacos , Triterpenos/uso terapêutico , Sequência de Aminoácidos , Animais , Caspase 3/química , Inibidores de Caspase/metabolismo , Cisteína/química , Compostos de Epóxi/química , Compostos de Epóxi/uso terapêutico , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Fígado/enzimologia , Fígado/patologia , Hepatopatias Alcoólicas/enzimologia , Hepatopatias Alcoólicas/patologia , Masculino , Camundongos , Simulação de Acoplamento Molecular , Poli(ADP-Ribose) Polimerases/metabolismo , Ligação Proteica , Alinhamento de Sequência , Triterpenos/metabolismo , Ácido Ursólico
11.
J Appl Toxicol ; 41(8): 1222-1231, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33445225

RESUMO

Momordica cochinchinensis (Lour.) Spreng is an indigenous South Asian edible fruit, and seeds of Momordica cochinchinensis have been used therapeutically in traditional Chinese medicine. Previous studies have shown that M. cochinchinensis seed (Momordicae Semen) has various pharmaceutical properties such as antioxidant and anti-ulcer effects as well as contains secondary metabolites with potential anticancer activities such as triterpenoids and saponins. Recent studies reported that water extract and ethanol extract of M. cochinchinensi seed were tested on mammals using an acute toxic classic method as OECD guidelines 420. No matter injected intravenously or intramuscularly, animals died within several days. In this study, zebrafish embryos were exposed to various doses of Cochinchina momordica seed extract (CMSE) from 2 dpf (days post fertilization, dpf) to 3 dpf. CMSE-induced cardiotoxicity such as pericardial edema, cardiac apoptosis, increased ROS production, cardiac neutrophil infiltration, decreased blood flow velocity, and reduced expression of three marker genes of cardiac functions were found in zebrafish roughly in a dose-dependent manner. These results suggest that CMSE may induce cardiotoxicity through pathways involved in inflammation, oxidative stress, and apoptosis.


Assuntos
Cardiotoxicidade/etiologia , Momordica/química , Extratos Vegetais/toxicidade , Sementes/química , Animais , Apoptose/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Coração/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Momordica/toxicidade , Sementes/toxicidade , Peixe-Zebra
12.
Zhongguo Zhong Yao Za Zhi ; 46(24): 6303-6311, 2021 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-34994122

RESUMO

Arthropod-borne diseases, such as malaria and dengue fever, have frequently beset five countries(Cambodia, Vietnam, Laos, Myanmar, and Thailand) in the tropical rainy Lancang-Mekong region, which pose a huge threat to social production and daily life. As a resort to such diseases, chemical drugs risk the resistance in plasmodium, non-availability for dengue virus, and pollution to the environment. Traditional medicinal plants have the multi-component, multi-target, and multi-pathway characteristics, which are of great potential in drug development. Exploring potential medicinals for arthropod-borne diseases from traditional medicinal plants has become a hot spot. This study summarized the epidemiological background of arthropod-borne diseases in the Lancang-Mekong region and screened effective herbs from the 350 medicinal plants recorded in CHINA-ASEAN Traditional Medicine. Based on CNKI, VIP, and PubMed, the plants for malaria and dengue fever and those for killing and repelling mosquitoes were respectively sorted out. Their pharmacological effects and mechanisms were reviewed and the material basis was analyzed. The result is expected to serve as a reference for efficient utilization of medicinal resources, development of effective and safe drugs for malaria and dengue fever, and the further cooperation between China and the other five countries in the Lancang-Mekong region.


Assuntos
Culicidae , Malária , Plantas Medicinais , Plasmodium , Animais , Tailândia
13.
Pharm Biol ; 58(1): 1294-1301, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33355515

RESUMO

CONTEXT: Although the roots and stems of Kadsura coccinea (Lem.) A. C. Smith. [Schisandraceae] are herbs and traditional foods in Li nationality, its toxicity remains unclear. OBJECTIVE: To study developmental toxicity of K. coccinea consumption and explain underlying mechanisms. MATERIALS AND METHODS: Zebrafish were applied to assess LC50 values of hydroethanol extract (KCH) and water extract (KCW) of Kadsura coccinea. In further study, three concentrations groups of KCH (3.75, 7.5 and 15 µg/mL for embryo, 7.5, 15 and 30 µg/mL for larvae) and control group (n = 30) were administered. At specific stages of zebrafish development, spontaneous movement, hatching rate, etc., were measured. Gene expressions related to developmental toxicity were examined. RESULTS: The LC50 value of KCH (24 or 45 µg/mL) was lower than KCW (1447 or 2011 µg/mL) in embryos or larvae. The inhibited spontaneous movement (20%), hatching rate (20%), body length (12%) and eye area (30%) were observed after KCH treatment. Moreover, the decreased liver areas (25%) and fluorescence intensity (33%), increased ALT (37%) and AST levels (42%) were found in larvae treated with KCH (30 µg/mL). The increased ROS (89%), MDA concentrations (30%), apoptosis generation (62%) and decreased T-SOD activity (16%) were also observed. The represented genes of developmental hepatotoxicity, oxidative stress and apoptosis in zebrafish were activated after KCH (15 or 30 µg/mL) treatment. DISCUSSION AND CONCLUSIONS: These results demonstrate that KCH has developmental toxicity on zebrafish. Our study provides a scientific basis for further research on the toxicity of Kadsura coccinea.


Assuntos
Apoptose/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Kadsura/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Kadsura/química , Larva/efeitos dos fármacos , Raízes de Plantas/química , Caules de Planta/química , Peixe-Zebra/embriologia
14.
Biochem Biophys Res Commun ; 512(2): 244-249, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30879760

RESUMO

Comprehensive knowledge on the murine CT26 colon carcinoma line is a classic model used in the pharmacodynamic experiments involving IDO-1 inhibitors, immune-related checkpoint antibodies and immune related mechanisms. In this study, we determined the impact of different subcutaneous inoculation locations on tumor growth and immune factor expression. CT26 cells were treated with the IDO-1 inhibitor, INCB024360, following INF-γ stimulation and analyzed for kynurenine concentration. Female Balb/c mice were inoculated with CT26 cells in either or both the right upper flank or the right lower flank. Isolated tumors were evaluated for changes in tumor volume following treatment with anti-PD-1, anti-CTLA-4, or no treatment. Isolated tumors were also evaluated for changes in immune cell subpopulations and expression of key immune factors using FACS. Treatment of two CT26 cell lines with INCB024360 produced similar results. IC50 values were 222.5 and 276.0, and the peak inhibitory rates were 97.99% and 91.85% respectively. Analysis of tumor growth revealed that tumor volumes were larger (1925 mm3 vs. 767 mm3), and the anti-tumor effects of both anti-PD-1 and anti-CTLA-4 were different in mice inoculated in the right lower flank than in those inoculated in the upper flank. FACS analysis revealed that the CD8+T subpopulation in the right upper flank was higher than that in the lower flank (*P < 0.05). By contrast, the myeloid cell populations was lower in the right upper flank than it was in the right lower flank (*P < 0.05). The INF-γ populations in CD8+T (*P < 0.05) and regulatory T (Treg) cell subpopulation (*P < 0.05) were also more abundant in the right upper flank than in the right lower flank. In contrast to the uniform of the results from the in vitro experiment, the anti-CTLA-4 and anti-PD-1 antibodies had different efficacies depending on the location of the subcutaneous inoculation of CT26 in mice. The differences in the percentages of CD8+T, myeloid cells, INF-γ in CD8+T, and Treg subpopulations indicated that the tumor microenvironment was affected by inoculation position. Taken together, these results suggest that tumors isolated from same cell line with different inoculation positions are different enough to be considered different models.


Assuntos
Neoplasias do Colo/imunologia , Microambiente Tumoral , Animais , Antineoplásicos Imunológicos/uso terapêutico , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/imunologia , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Feminino , Interferon gama/imunologia , Camundongos Endogâmicos BALB C , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/efeitos dos fármacos
15.
Int J Mol Sci ; 20(22)2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752171

RESUMO

There is an imperative need to develop efficient whole-animal-based testing assays to determine the potential toxicity of engineered nanomaterials. While previous studies have demonstrated toxicity in lung and skin cells after C70 nanoparticles (NPs) exposure, the potential detrimental role of C70 NPs in neurobehavior is largely unaddressed. Here, we evaluated the chronic effects of C70 NPs exposure on behavior and alterations in biochemical responses in adult zebrafish. Two different exposure doses were used for this experiment: low dose (0.5 ppm) and high dose (1.5 ppm). Behavioral tests were performed after two weeks of exposure of C70 NPs. We found decreased locomotion, exploration, mirror biting, social interaction, and shoaling activities, as well as anxiety elevation and circadian rhythm locomotor activity impairment after ~2 weeks in the C70 NP-exposed fish. The results of biochemical assays reveal that following exposure of zebrafish to 1.5 ppm of C70 NPs, the activity of superoxide dismutase (SOD) in the brain and muscle tissues increased significantly. In addition, the concentration of reactive oxygen species (ROS) also increased from 2.95 ± 0.12 U/ug to 8.46 ± 0.25 U/ug and from 0.90 ± 0.03 U/ug to 3.53 ± 0.64 U/ug in the muscle and brain tissues, respectively. Furthermore, an increased level of cortisol was also observed in muscle and brain tissues, ranging from 17.95 ± 0.90 pg/ug to 23.95 ± 0.66 pg/ug and from 3.47 ± 0.13 pg/ug to 4.91 ± 0.51 pg/ug, respectively. Increment of Hif1-α level was also observed in both tissues. The elevation was ranging from 11.65 ± 0.54 pg/ug to 18.45 ± 1.00 pg/ug in the muscle tissue and from 4.26 ± 0.11 pg/ug to 6.86 ± 0.37 pg/ug in the brain tissue. Moreover, the content of DNA damage and inflammatory markers such as ssDNA, TNF-α, and IL-1ß were also increased substantially in the brain tissues. Significant changes in several biomarker levels, including catalase and malondialdehyde (MDA), were also observed in the gill tissues. Finally, we used a neurophenomic approach with a particular focus on environmental influences, which can also be easily adapted for other aquatic fish species, to assess the toxicity of metal and carbon-based nanoparticles. In summary, this is the first study to illustrate the adult zebrafish toxicity and the alterations in several neurobehavior parameters after zebrafish exposure to environmentally relevant amounts of C70 NPs.


Assuntos
Comportamento Animal/efeitos dos fármacos , Fulerenos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Peixe-Zebra/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Exposição Ambiental/efeitos adversos , Comportamento Exploratório/efeitos dos fármacos , Feminino , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Hidrocortisona/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Nanopartículas Metálicas , Músculos/efeitos dos fármacos , Músculos/metabolismo , Testes de Toxicidade Crônica , Peixe-Zebra/metabolismo
16.
Int J Mol Sci ; 20(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669336

RESUMO

Atherosclerosis is the pathological process in arteries due to the plaque formation that is responsible for several diseases like heart disease, stroke and peripheral arterial disease. In this study, we performed in vitro and in vivo assays to evaluate the potential anti-atherosclerosis activity of peach kernel oil. For the in vitro assay, we incubated human umbilical vein endothelial cells (HUVEC) with tumor necrosis factor-α (TNF-α) to induce tissue factors (TF, an essential mediator of hemostasis and trigger of thrombosis) elevation. We found that TNF-α-induced TF elevation was suppressed by peach kernel oil in a dose-dependent manner at both mRNA and protein levels. Peach kernel oil can significantly improve HUVEC viability, protect the endothelial cells, which achieved the goal of prevention of thrombotic diseases. For the in vivo assay, we investigated the effect and mechanism of peach kernel oil on preventing atherosclerotic lesion formation in ApoE knockout mice. Results show that peach kernel oil could reduce total cholesterol, triglyceride, low-density lipoprotein cholesterol levels, elevate the high-density lipoprotein cholesterol level in serum, and reduce the area of the aortic atherosclerotic lesions in high-fat diet fed ApoE knockout mice. Moreover, peach kernel oil treatment can significantly down regulate the expression of TF protein to inhibit the formation of atherosclerotic plaque. In conclusion, peach kernel oil may be a potential health food to prevent atherosclerosis in cardiovascular diseases.


Assuntos
Aterosclerose/etiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Óleos de Plantas/farmacologia , Prunus persica/química , Tromboplastina/genética , Animais , Aorta/metabolismo , Aorta/patologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Ácidos Graxos/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Camundongos Knockout para ApoE , Modelos Biológicos , Compostos Fitoquímicos/química , Óleos de Plantas/química , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , RNA Mensageiro/genética , Tromboplastina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
Int J Mol Sci ; 19(10)2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332818

RESUMO

In this study, we evaluated the acute (24, 48, 72, and 96 h) and chronic (21 days) adverse effects induced by low doses (0.1, 0.5, 1, and 1.5 mg/L) of zinc chloride (ZnCl2) exposure in adult zebrafish by using behavioral endpoints like three-dimensional (3D) locomotion, passive avoidance, aggression, circadian rhythm, and predator avoidance tests. Also, brain tissues were dissected and subjected to analysis of multiple parameters related to oxidative stress, antioxidant responses, superoxide dismutase (SOD), neurotoxicity, and neurotransmitters. The results showed that ZnCl2-exposed fishes displayed decreased locomotor behavior and impaired short-term memory, which caused an Alzheimer's Disease (AD)-like syndrome. In addition, low concentrations of ZnCl2 induced amyloid beta (amyloid ß) and phosphorylated Tau (p-Tau) protein levels in brains. In addition, significant induction in oxidative stress indices (reactive oxygen species (ROS) and malondialdehyde (MDA)), reduction in antioxidant defense system (glutathione (GSH), GSH peroxidase (GSH-Px) and SOD) and changes in neurotransmitters were observed at low concentrations of ZnCl2. Neurotoxic effects of ZnCl2 were observed with significant inhibition of acetylcholine (ACh) activity when the exposure dose was higher than 1 ppm. Furthermore, we found that zinc, metallothionein (MT), and cortisol levels in brain were elevated compared to the control group. A significantly negative correlation was observed between memory and acetylcholinesterase (AChE) activity. In summary, these findings revealed that exposure to ZnCl2 affected the behavior profile of zebrafish, and induced neurotoxicity which may be associated with damaged brain areas related to memory. Moreover, our ZnCl2-induced zebrafish model may have potential for AD-associated research in the future.


Assuntos
Acetilcolina/metabolismo , Envelhecimento/fisiologia , Encéfalo/metabolismo , Cloretos/efeitos adversos , Memória de Curto Prazo , Atividade Motora , Neurotoxinas/metabolismo , Peixe-Zebra/fisiologia , Compostos de Zinco/efeitos adversos , Agressão , Doença de Alzheimer/patologia , Animais , Aprendizagem da Esquiva , Biomarcadores/metabolismo , Ritmo Circadiano/efeitos da radiação , Regulação para Baixo/efeitos da radiação , Memória de Curto Prazo/efeitos da radiação , Atividade Motora/efeitos da radiação , Neurotransmissores/metabolismo , Estresse Oxidativo/efeitos da radiação , Comportamento Predatório
18.
Int J Mol Sci ; 19(12)2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30513951

RESUMO

There is a growing concern for the potential toxicity of engineered nanomaterials that have made their way into virtually all novel applications in the electronics, healthcare, cosmetics, technology, and engineering industries, and in particular, biomedical products. However, the potential toxicity of carbon 60 (C60) at the behavioral level has not been properly evaluated. In this study, we used idTracker, a multitracking algorithm to quantitatively assess behavioral toxicity induced by C60 nanoparticles (C60 NPs) in adult zebrafish. We demonstrated that locomotion, novel tank exploration, aggression, shoaling, and color preference activities of the C60 NPs-treated fish was significantly reduced. In addition, the C60 NPs-treated fish also displayed dysregulation of the circadian rhythm by showing lower locomotion activities in both day and night cycles. The biochemical results showed that C60 NPs exposure at low concentration induced oxidative stress and DNA damage, reduced anti-oxidative capacity and ATP (adenosine triphosphate) levels, and induced stress-associated hormones, hypoxia, as well as inflammation marker upregulation in muscle and gill tissues. Together, this work, for the first time, provide direct evidence showing that the chronic exposure of C60 NPs induced multiple behavioral abnormalities in adult zebrafish. Our findings suggest that the ecotoxicity of C60 NPs towards aquatic vertebrates should be carefully evaluated.


Assuntos
Comportamento Animal/efeitos dos fármacos , Exposição Ambiental/análise , Fulerenos/toxicidade , Nanopartículas/toxicidade , Testes de Toxicidade , Peixe-Zebra/metabolismo , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Comportamento de Escolha/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Cor , Determinação de Ponto Final , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Hipóxia/patologia , Inflamação/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Músculos/efeitos dos fármacos , Músculos/metabolismo , Nanopartículas/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Comportamento Predatório/efeitos dos fármacos , Comportamento Social
19.
Clin Exp Ophthalmol ; 45(6): 613-624, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28256796

RESUMO

BACKGROUND: The culture of retinal progenitors from an accessible adult stem cell source such as the limbus could provide a useful autologous source of retinal cell therapies. The human corneoscleral limbus contains multipotent stem cells that can be cultured as floating neurospheres. Previous work in rodents has demonstrated neuronal and photoreceptor differentiation from limbal neurosphere cultures. Here, this study has examined undifferentiated cultured adult human limbal neurospheres as donor cells for retinal cell therapies by transplantation into a rat model of retinal degeneration. METHODS: Gene expression in limbal neurospheres was examined by immunostaining and western blot. Human limbal neurospheres were transplanted into the subretinal space of Royal College of Surgeon's rats. Rats were monitored by optical coherence tomography for 6 weeks then processed for retinal histology. RESULTS: Human limbal neurospheres expressed the neural lineage markers, Nestin, sex determining region box-2 and N-cadherin, and the retinal transcription factors microphthalmia-associated transcription factor, sex determining region box-2 and orthodentical homeobox-2. Human limbal neurospheres could be cultured to express NeuN, neurofilament and rhodopsin. Rats receiving saline or no injection underwent complete degeneration of the retinal outer nuclear layer after 3 weeks. In contrast, rats injected with human limbal neurospheres or retinal pigment epithelial cells maintained the outer nuclear layer for up to 6 weeks. Gene expression in transplanted limbal neurospheres was inconsistent with the production of mature retinal pigment epithelial or photoreceptor cells. CONCLUSIONS: Human limbal neurospheres represent an accessible source of autologous donor cells for the treatment of retinal diseases.


Assuntos
Morte Celular , Limbo da Córnea/citologia , Epitélio Pigmentado Ocular/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/patologia , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Antígenos Nucleares/biossíntese , Antígenos Nucleares/genética , Western Blotting , Diferenciação Celular , Células Cultivadas , DNA/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Genes Homeobox/genética , Humanos , Injeções Intraoculares , Limbo da Córnea/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Epitélio Pigmentado Ocular/metabolismo , Ratos , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/cirurgia , Rodopsina/biossíntese , Rodopsina/genética , Células-Tronco/metabolismo , Tomografia de Coerência Óptica
20.
Molecules ; 20(8): 14565-75, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26274945

RESUMO

Four new cyclohexylideneacetonitrile derivatives 1-4, named menisdaurins B-E, as well as three known cyclohexylideneacetonitrile derivatives--menisdaurin (5), coclauril (6), and menisdaurilide (7)--were isolated from the hypocotyl of a mangrove (Bruguiera gymnorrhiza). The structures of the isolates were elucidated on the basis of extensive spectroscopic analysis. Compounds 1-7 showed anti-Hepatitis B virus (HBV) activities, with EC50 values ranging from 5.1 ± 0.2 µg/mL to 87.7 ± 5.8 µg/mL.


Assuntos
Acetonitrilas/química , Rhizophoraceae/química , Acetonitrilas/isolamento & purificação , Acetonitrilas/farmacologia , Benzofuranos/química , Benzofuranos/isolamento & purificação , Benzofuranos/farmacologia , Linhagem Celular Tumoral , Glicosídeos/química , Glicosídeos/isolamento & purificação , Glicosídeos/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Humanos , Hipocótilo/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA