Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(18): 10106-10115, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32342973

RESUMO

Understanding the interfacial structure of aqueous electrolyte solutions is important and relevant to a wide range of systems, ranging from atmospheric aerosols to electrochemistry, and biological environments. Though significant efforts have been made to unravel the interfacial structure of water molecules, the structure and dynamics of ions at the interface have not yet been fully elucidated. Here, the interfacial structure of the aqueous solution was investigated directly by monitoring the thiocyanate (SCN-) anions using surface-specific sum frequency generation (SFG) vibrational spectroscopy. The molecular orientation of the SCN- anions and their adsorption behavior at the air/water interface were systematically determined by quantitative polarization analysis. The transition dipole of the CN stretching of the SCN- anion is oriented around 44° from the surface normal of the NaSCN aqueous solution surface and remained unchanged with the bulk concentration varying from 1 mol kg-1 to 13 mol kg-1. The free energy of adsorption of SCN- anions at the air/water interface was determined to be -1.53 ± 0.04 kcal mol-1. Furthermore, a new SFG peak positioned at 2080 cm-1 in the ppp polarization combination was observed at the air/15.0 mol kg-1 NaSCN aqueous solution interface for the first time. Concentration-dependent SFG analysis and density functional theory (DFT) calculation further revealed that the SCN- anions form an ion clustering structure at the air/water interface. The subtle and specific Na+ and K+ counter-cation effects on the interfacial structure of the SCN- anions at the aqueous solution interface were also observed, which showed that ion cooperativity plays an important role in affecting the interfacial structure of ions at the air/water interface. The results are expected to yield significant insights into the understanding of the structure of aqueous solution surfaces and the molecular level mechanism of the cationic Hofmeister effect.

2.
Appl Opt ; 58(19): 5347-5352, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503635

RESUMO

Maximum a posteriori estimation of Markov random fields (MRFs) is a popular research area in computer vision, and many algorithms have been proposed to deal with these types of problems. The phase-unwrapping problem is modeled as the optimization of MRFs in this research, and the binary algorithm, improved quadratic pseudo-Boolean optimization, is utilized to solve the phase-unwrapping problem. Both the interferometric phases generated from the commonly used computer simulated surfaces and also real terrains are researched in the experimental section, and the unwrapping results are compared. The proposed algorithm achieves unwrapping results comparable to the state-of-the-art unwrapping method but costs less time for large-scale phase images.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36753052

RESUMO

Pure-bromide quasi-2D perovskite (PBQ-2DP) promises high-performance light-emitting diodes (LEDs), while a challenge remains on control over its n-phase distribution for bright true-blue emission. Present work addresses the challenge through exploring the passivation molecule of amino acid with reinforced binding energy, which generates narrow n-phase distribution preferentially at n = 3 with true blue emission at 478 nm. Consequently, a peak external quantum efficiency of 5.52% and a record brightness of 512 cd m-2 are achieved on the PBQ-2DP-based true blue PeLED, these both values located among the top in the records of similar devices. We further reveal that the electron-phonon coupling results in the red-shifted emission in the PBQ-2DP film, suggesting that the view of n-phase distribution dominated true-blue emission in PBQ-2DP needs to be revisited, pointing out a guideline of electron-phonon coupling suppression to relieve the strait of realizing true blue or even deep blue emission in the PBQ-2DP film.

4.
J Phys Chem Lett ; 13(14): 3158-3164, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35362990

RESUMO

ZnSe semiconductor nanocrystals (NCs) with a size comparable to their Bohr radius are synthesized, and the native capping agents with long hydrocarbon tails are replaced with short thiocyanate (SCN) ligands through a ligand exchange method. The structural dynamics of SCN ligands on the surface of ZnSe NCs in solution is investigated by ultrafast infrared spectroscopy. Vibrational population relaxation of SCN ligands is accelerated due to the specific interaction with the positively charged sites on the surface of NCs. The orientational anisotropy of the bound SCN ligands decayed at a rate much faster than that in the control solution containing Zn2+ cations. From the wobbling-in-the-cone model analysis, we found that the SCN ligand undergoes wobbling orientational diffusion with a relatively large cone semiangle on the surface of ZnSe NCs, and the overall orientational diffusion of bound SCN is found to be strongly dependent on the size of ZnSe NCs.

5.
ACS Appl Mater Interfaces ; 13(14): 16837-16845, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33783181

RESUMO

Artificial photofunctional systems with energy and electron transfer functions, inspired from photosynthesis in nature, have been developed for many promising applications including solar cell, biolabeling, photoelectric materials, and photodriven catalysis. Supramolecular hosts including macrocycles and cages have been explored for simulating photosynthesis based on a host-guest strategy. Herein, we report a host-guest approach by using a tetraphenylethene-based octacationic cage and fluorescent dyes to construct artificial photofunctional systems with energy and electron transfer functions. The cage traps various dyes within its hydrophobic cavity to form 1:1 host-guest complexes via CH-π, π-π, and/or electrostatic interactions in solution. The efficient energy transfer and ultrafast photoinduced electron transfer between the cage and dyes are competitive processes with each other in artificial photofunctional systems. Spectroscopic techniques that confirm energy transfer from the fluorescent cage to dyes (e.g., NiR, R700, and R800) are efficient, which induce the red shift of fluorescence. On the other hand, ultrafast photoinduced electron transfer from dyes (e.g., ICG, AG, and AV) to the fluorescent cage can induce fluorescence quenching. This study provides an insight into the construction of artificial photofunctional systems with energy and electron transfer functions via a host-guest approach in solution.

6.
ACS Appl Mater Interfaces ; 13(47): 56476-56484, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792326

RESUMO

Addressing the interactions between optical antennas and ensembles of emitters is particularly challenging. Charge transfer and Coulomb interactions complicate the understanding of the carrier dynamics coupled by antennas. Here, we show how Au antennas enhance the luminescence of CdSe/CdS quantum dot assemblies through carrier dynamics control within the framework of the local Kirchhoff law. The Au antennas inject hot electrons into quantum dot assemblies via plasmon-induced hot electron transfer that increases the carrier concentration. Also, the localized surface plasmon resonances of Au antennas favorably tilt the balance between nonradiative Auger processes and radiative recombination in the CdSe core. Eventually, a high bright (125,091.6 cd/m2) deep-red quantum dot light-emitting diode is obtained by combining with Au antennas. Our findings suggest a new understanding of light emission of assembled emitters coupled by antennas, which is of essential interest for the description of light-matter interaction in advanced optoelectronics.

7.
ACS Appl Mater Interfaces ; 13(37): 44760-44767, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34505502

RESUMO

The optical plasmonic cavity (OPC) including the metallic optical nanoantennas and a metal film exhibits extreme field enhancement for the increased spontaneous emission rate of emitters. The resonance wavelength of the OPC can be easily controlled by the volume of the OPC and the localized surface plasmonic resonances (LSPRs) of the nanoantennas, facilitating the effective coupling of OPC and the emitters. However, involving the OPC into the light emission-enhanced solution-processed devices is still a difficult challenge. The trade-off between the metallic structure of OPC and the solution procedures limits the performance enhancement of the electrical-driven devices. In this work, we construct a device-compatible OPC that allows the characterization of the carrier dynamics of quantum dot (QD) films in the real devices in-suit. The radiative recombination rate and relaxation rate of carriers in QDs are increased by the LSPR effect of the silver nanocubes for luminescence enhancement. The OPC further increases the spontaneous emission rate of QD films, achieving a Purcell factor of 166 and improving the electroluminescence of the OPC-based QD light-emitting diodes (QLEDs). The design of the OPC-involved QLEDs offers a solution for addressing the limitation of fabrication of OPC-combined solution-processed optoelectronic light sources.

8.
J Phys Chem Lett ; 11(2): 548-555, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31884795

RESUMO

The semiconductor CuSCN film, which is typically used as the hole-transporting layer (HTL) in solar cell studies, has been investigated by Fourier transform infrared (FTIR) spectroscopy and ultrafast transient infrared (IR) spectroscopy. A sharp peak at 2175 cm-1 corresponding to the CN vibrational stretching mode in CuSCN was observed, and the peak frequency remained unchanged by varying the thickness of the CuSCN thin film. Vibrational relaxation measurements showed that the 0-1 and 1-2 transitions of CN stretching can be observed at 2175 and 2140 cm-1, respectively. The heat-induced absorption and bleaching peaks (2167 and 2175 cm-1) can be clearly seen at a waiting time of 40 ps. The vibrational relaxation of the CN stretching mode determined from the 1-2 transition exhibited a biexponential decay with time constants of 7.4 ± 0.5 (90%) and 158 ± 50 ps (10%). Importantly, the abnormal anisotropy decay of the CN stretching mode in the CuSCN thin film was also observed for the first time. A detailed analysis showed that the distinct anisotropy decay curve could be described using a triexponential decay function, which was explained by three different processes: resonance energy transfer (∼8 ps), a thermalization process (∼40 ps), and molecular rotation (∼150 ps). The time scale of the thermalization process caused by the vibrational relaxation in CuSCN is at a time scale of 40 ps, which is important for us to understand the thermally activated charge-transport property of the CuSCN film employed as the HTL. Further UV pump-IR probe measurement revealed that the carrier scattering and relaxation processes in the CuSCN film are strongly associated with the vibrational excitation and relaxation dynamics of the CN stretching mode. It is expected that the fundamental understanding of the vibrational relaxation dynamics of the CuSCN thin film should provide helpful insight to elucidate its role as the HTL in solar cell studies at the molecular level.

9.
J Phys Chem B ; 124(41): 9154-9162, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32965118

RESUMO

The specific host-guest interactions in the corresponding complexes of K+ and NH4+ with typical crown ethers were investigated by using FTIR and ultrafast IR spectroscopies. The counteranions, i.e., SCN-, were employed as a local vibrational probe to report the structural dynamics of the complexation. It was found that the vibrational relaxation dynamics of the SCN- was strongly affected by the cations confined in the cavities of the crown ethers. The time constant of the vibrational population decay of SCN- in the complex of NH4+ with the 18-crown-6 was determined to be 6 ± 2 ps, which is ∼30 times faster than that in the complex of K+ with the crown ethers. Control experiments showed that the vibrational population decay of SCN- depended on the size of the cavities of the crown ethers. A theoretical calculation further indicated that the nitrogen atom of SCN- showed preferential coordination to the K+ ions hosted by the crown ethers, while the NH4+ can form hydrogen bonds with the oxygen atoms in the studied crown ethers. The geometric constraints formed in the complex of crown ethers can cause a specific interaction between the NH4+ and SCN-, which can facilitate the intermolecular vibrational energy redistribution of the SCN-.

10.
Exp Parasitol ; 123(1): 6-10, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19540233

RESUMO

Anopheles dirus is refractory to a rodent malaria parasite, Plasmodium yoelii, and melanized oocysts are manifested in infected mosquitoes. Prophenoloxidase (PPO) is a zymogen whose active form mediates melanotic encapsulation of invading pathogens in mosquitoes. In this study, we cloned cDNA fragments of four An. dirus PPOs, that are orthologs of Anopheles gambiae PPO2, PPO4, PPO5 and PPO6. AdPPO4 expression in hemocytes was induced in response to P. yoelii infection. RNA interference using double stranded RNA of AdPPO4 led to depletion of its mRNA and other PPO transcripts. This depletion increased P. yoelii infection prevalence and oocyst intensity, and abolished the melanization of oocysts as well. Therefore, An. dirus PPOs may play a role in the refractoriness to P. yoelii.


Assuntos
Anopheles/enzimologia , Anopheles/parasitologia , Catecol Oxidase/metabolismo , Precursores Enzimáticos/metabolismo , Plasmodium yoelii/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Anopheles/classificação , Anopheles/genética , Catecol Oxidase/química , Catecol Oxidase/genética , Clonagem Molecular , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Feminino , Insetos Vetores/classificação , Insetos Vetores/enzimologia , Insetos Vetores/genética , Insetos Vetores/parasitologia , Melaninas/metabolismo , Camundongos , Filogenia , Plasmodium yoelii/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA