Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(21): 217702, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35687442

RESUMO

Antiferromagnetic insulators have recently been proved to support spin current efficiently. Here, we report the dampinglike spin-orbit torque (SOT) in Pt/NiO/CoFeB has a strong temperature dependence and reverses the sign below certain temperatures, which is different from the slight variation with temperature in the Pt/CoFeB bilayer. The negative dampinglike SOT at low temperatures is proposed to be mediated by the magnetic interactions that tie with the "exchange bias" in Pt/NiO/CoFeB, in contrast to the thermal-magnon-mediated scenario at high temperatures. Our results highlight the promise to control the SOT through tuning the magnetic structure in multilayers.

2.
ACS Appl Mater Interfaces ; 14(51): 57321-57327, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36525266

RESUMO

For the spin-to-charge conversion (SCC) in heavy metal/ferromagnet (HM/FM) heterostructure, the contribution of interfacial spin-orbit coupling (SOC) remains controversial. Here, we investigate the SCC process of the Pt/NiFe heterostructure by the spin pumping in YIG/Pt/NiFe/IrMn multilayers. Due to the exchange bias of NiFe/IrMn structure, the NiFe magnetization can be switched between magnetically unsaturated and saturated states by opposite resonance fields of YIG layer. The spin-pumping signal is found to decrease significantly when the NiFe magnetization is changed from the saturated state to the unsaturated state. Theoretical analysis indicates that the interfacial spin absorption is enhanced for the above-mentioned NiFe magnetic state change, which results in the increased and decreased spin flow in the Pt layer and across the Pt/NiFe interface, respectively. These results demonstrate that in our case the interfacial SOC effect at the Pt/NiFe interface is dominant over the bulk inverse spin Hall effect in the Pt layer. Our work reveals a significant role of interfacial SOC in the SCC in HM/FM heterostructure, which can promote the development of high-efficiency spintronic devices through interfacial engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA