Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 884: 163865, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37142014

RESUMO

Reclaimed water from municipal wastewater has great potential in mitigating the water resource crisis, while the inevitable residue of organic micropollutants (OMPs) challenges the safety of reclaimed water reuse. Limited information was available regarding the overall adverse effects of mixed OMPs in reclaimed water, especially the endocrine-disrupting effects on living organisms. Herein, chemical monitoring in two municipal wastewater treatment plants showed that 31 of 32 candidate OMPs including polycyclic aromatic hydrocarbons (PAHs), phenols, pharmaceuticals and personal care products (PPCPs) were detected in reclaimed water, with a concentration ranging from ng/L to µg/L. Then, based on the risk quotient value, phenol, bisphenol A, tetracycline, and carbamazepine were ranked as high ecological risks. Most PAHs and PPCPs were quantified as medium and low risks, respectively. More importantly, using aquatic vertebrate zebrafish as an in vivo model, the endocrine-disrupting potentials of OMP mixtures were comprehensively characterized. We found that a realistic exposure to reclaimed water induced estrogen-like endocrine disruption and hyperthyroidism in zebrafish, abnormal expression of genes along the hypothalamus-pituitary-thyroid (-gonad) axes, reproductive impairment, and transgenerational toxicity. Based on the chemical analyses, risk quotient calculations, and biotoxicity characterization, this study contributed to understanding the ecological risks of reclaimed water and developing the control standards for OMPs. In addition, application of the zebrafish model in this study also highlighted the significance of in vivo biotoxicity test in water quality evaluation.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Estrogênios/análise , Águas Residuárias , Medição de Risco
2.
Chemosphere ; 308(Pt 3): 136429, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36115475

RESUMO

Florfenicol (FF), a widely used veterinary antibiotic, has been frequently detected in both aquatic environments and human body fluids. As a result, there is a growing concern on its health risks. Previous studies have revealed various toxicities of FF on animals, while there are relatively limited researches on its metabolic toxicity. Herein, by employing zebrafish as an in vivo model, endpoints at multiple levels of biological organization were measured to investigate the metabolic toxicity, especially disturbances on lipid metabolism, of this emerging pollutant. Our results indicated that early-life exposure (from 2 h past fertilization (hpf) to 15 days past fertilization (dpf)) to FF significantly increased body mass index (BMI) values, staining areas of visceral lipids, and triacylglycerol (TAG) and total cholesterol (TC) contents of larvae. Further, by analyzing expression patterns of genes encoding key proteins regulating lipid metabolism, our data suggested that promoted intestinal absorption and hepatic de novo synthesis of lipids, suppressed TAG decomposition, and inhibited FFA oxidation all contributed to TAG accumulation in larvae. Following whole-life exposure (from 2 hpf to 120 dpf), BMI values, TAG and TC contents all increased significantly in males, and significant increases of hepatic TAG levels were also observed in females. Moreover, FF exposure interfered with lipid homeostasis of males and females in a gender-specific pattern. Our study revealed the obesogenic effects of FF at environmentally relevant concentrations (1, 10, and 100 µg/L) and therefore will benefit assessment of its health risks. Additionally, our results showed that FF exposure caused a more pronounced obesogenic effect in zebrafish larvae than adults, as suggested by significant increases of all endpoints at individual, tissular, and molecular levels in larvae. Therefore, our study also advances the application of zebrafish larval model in assessing metabolic toxicity of chemicals, due to the higher susceptibility of larvae than adults.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Antibacterianos/farmacologia , Colesterol/metabolismo , Feminino , Humanos , Larva , Metabolismo dos Lipídeos , Masculino , Tianfenicol/análogos & derivados , Triglicerídeos/metabolismo , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA