Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Carcinog ; 62(6): 866-881, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36988347

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the deadliest human malignancies characterized by late-stage diagnosis, drug resistance, and poor prognosis. Pyruvate dehydrogenase kinase 1 (PDK1) plays an important role in regulating the metabolic reprogramming of cancer cells. However, its expression, function, and regulatory mechanisms of PDK1 in ESCC have not been reported. In this study, we found that PDK1 silence and dichloroacetic acid (DCA) significantly inhibited the growth of ESCC cells and induced cell apoptosis. Interestingly, PDK1 is a direct target of miR-6516-5p, and miR-6516-5p/PDK1 axis suppressed the growth of ESCC cell by inhibiting glycolysis. Moreover, DCA and cisplatin (cis-diammine-dichloroplatinum, DDP) synergistically inhibited the progression and glycolysis ability of ESCC cells both in vitro and in vivo by increasing oxidative stress via the inhibition of the Keap1/Nrf2 signaling pathway. And, Tert-butylhydroquinone (TBHQ), a specific activator of the Keap1/Nrf2 signaling, could diminish the synergic antitumor effects of DCA and DDP on ESCC cells. Collectively, our findings indicate that PDK1 may regulate the progression of ESCC by metabolic reprogramming, which provides new strategy for the treatment of ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
2.
Int J Biol Macromol ; 267(Pt 2): 131520, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615859

RESUMO

The adverse microenvironment, including neuroinflammation, hinders the recovery of spinal cord injury (SCI). Regulating microglial polarization to alleviate neuroinflammation at the injury site is an effective strategy for SCI recovery. MG53 protein exerts obvious repair ability on multiple tissues damage, but with short half-life. In this study, we composited an innovative MG53/GMs/HA-Dex neural scaffold using gelatin microspheres (GMs), hyaluronic acid (HA), and dextran (Dex) loaded with MG53 protein. This novel neural scaffold could respond to MMP-2/9 protein and stably release MG53 protein with good physicochemical properties and biocompatibility. In addition, it significantly improved the motor function of SCI mice, suppressed M1 polarization of microglia and neuroinflammation, and promoted neurogenesis and axon regeneration. Further mechanistic experiments demonstrated that MG53/GMs/HA-Dex hydrogel inhibited the JAK2/STAT3 signaling pathway. Thus, this MG53/GMs/HA-Dex neural scaffold promotes the functional recovery of SCI mice by alleviating neuroinflammation, which provides a new intervention strategy for the neural regeneration and functional repair of SCI.


Assuntos
Gelatina , Ácido Hialurônico , Janus Quinase 2 , Doenças Neuroinflamatórias , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Animais , Camundongos , Recuperação de Função Fisiológica/efeitos dos fármacos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Doenças Neuroinflamatórias/tratamento farmacológico , Gelatina/química , Gelatina/farmacologia , Janus Quinase 2/metabolismo , Dextranos/química , Alicerces Teciduais/química , Microesferas , Fator de Transcrição STAT3/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Modelos Animais de Doenças , Neurogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Hidrogéis/química , Hidrogéis/farmacologia
3.
Int J Biol Macromol ; 268(Pt 1): 131739, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657920

RESUMO

Alzheimer's disease (AD) is a chronic neurodegenerative disease with high prevalence, long duration and poor prognosis. The blood-brain barrier (BBB) is a physiologic barrier in the central nervous system, which hinders the entry of most drugs into the brain from the blood, thus affecting the efficacy of drugs for AD. Natural products are recognized as one of the promising and unique therapeutic approaches to treat AD. To improve the efficiency and therapeutic effect of the drug across the BBB, a natural polyphenolic compound, procyanidin C-1 (C1) was encapsulated in glucose-functionalized bovine serum albumin (BSA) nanoparticles to construct Glu-BSA/C1 NPs in our study. Glu-BSA/C1 NPs exhibited good stability, slow release, biocompatibility and antioxidant properties. In addition, Glu-BSA/C1 NPs penetrated the BBB, accumulated in the brain by targeting Glut1, and maintained the BBB integrity both in vitro and in vivo. Moreover, Glu-BSA/C1 NPs alleviated memory impairment of 5 × FAD mice by reducing Aß deposition and Tau phosphorylation and promoting neurogenesis. Mechanistically, Glu-BSA/C1 NPs significantly activated the PI3K/AKT pathway and inhibited the NLRP3/Caspase-1/IL-1ß pathway thereby suppressing neuroinflammation. Taken together, Glu-BSA/C1 NPs could penetrate the BBB and mitigate neuroinflammation in AD, which provides a new therapeutic approach targeting AD.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Modelos Animais de Doenças , Glucose , Nanopartículas , Soroalbumina Bovina , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Animais , Soroalbumina Bovina/química , Camundongos , Glucose/metabolismo , Nanopartículas/química , Proantocianidinas/farmacologia , Proantocianidinas/química , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Biflavonoides/farmacologia , Biflavonoides/química , Catequina/farmacologia , Catequina/química , Catequina/análogos & derivados , Humanos , Masculino
4.
Polymers (Basel) ; 15(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37177342

RESUMO

Neurodegenerative diseases are common, incurable neurological disorders with high prevalence, and lead to memory, movement, language, and intelligence impairments, threatening the lives and health of patients worldwide. The blood-brain barrier (BBB), a physiological barrier between the central nervous system and peripheral blood circulation, plays an important role in maintaining the homeostasis of the intracerebral environment by strictly regulating the transport of substances between the blood and brain. Therefore, it is difficult for therapeutic drugs to penetrate the BBB and reach the brain, and this affects their efficacy. Nanoparticles (NPs) can be used as drug transport carriers and are also known as nanoparticle-based drug delivery systems (NDDSs). These systems not only increase the stability of drugs but also facilitate the crossing of drugs through the BBB and improve their efficacy. In this article, we provided an overview of the types and administration routes of NPs, highlighted the preclinical and clinical studies of NDDSs in neurodegenerative diseases, and summarized the combined therapeutic strategies in the management of neurodegenerative diseases. Finally, the prospects and challenges of NDDSs in recent basic and clinical research were also discussed. Above all, NDDSs provide an inspiring therapeutic strategy for the treatment of neurodegenerative diseases.

5.
Gels ; 9(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37998998

RESUMO

Spinal cord injury (SCI) is a severe neurological injury caused by traffic accidents, trauma, or falls, which leads to significant loss of sensory, motor, and autonomous functions and seriously affects the patient's life quality. Although considerable progress has been made in mitigating secondary injury and promoting the regeneration/repair of SCI, the therapeutic effects need to be improved due to drug availability. Given their good biocompatibility, biodegradability, and low immunogenicity, injectable hydrogels can be used as delivery systems to achieve controlled release of drugs and other substances (cells and proteins, etc.), offering new hope for SCI repair. In this article, we summarized the types of injectable hydrogels, analyzed their application as delivery systems in SCI, and further discussed the mechanisms of hydrogels in the treatment of SCI, such as anti-inflammatory, antioxidant, anti-apoptosis, and pro-neurogenesis. Moreover, we highlighted the potential benefits of hydrogels in the treatment of SCI in combination with therapies, including the recent advances and achievements of these promising tools. Our review may offer new strategies for the development of SCI treatments based on injectable hydrogels as delivery systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA