Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(7-8): 2689-2705, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36912904

RESUMO

The desynchronization of circadian rhythms affected by light may induce physiological and psychological disequilibrium. We aimed to elucidate changes of growth, depression-anxiety like behaviors, melatonin and corticosterone (CORT) secretion, and gut microbiota in rats influenced by long-term light inputs. Thirty male Sprague-Dawley rats were exposed to a 16/8 h light/dark regime for 8 weeks. The light period was set to 13 h of daylight with artificial light (AL group, n = 10), or with natural light (NL group, n = 10), or with mixed artificial-natural light (ANL group, n = 10), and 3 h of artificial night light after sunset. The obtained findings indicated that the highest weight gain and food efficiency were observed in the AL group and the lowest in NL group. In the behavioral tests, the NL and ANL groups showed lower anxiety level than AL group, and ANL groups showed lower depression level than AL group. The NL and ANL groups had delayed acrophases and maintained higher concentrations of melatonin compared to AL group. The circadian rhythm of CORT was only found in ANL group. At the phylum level, the mixed light contributed to a lower abundance of Bacteroidetes. The genus level results recommend a synergistic effect of artificial light and natural light on Lactobacillus abundance and an antagonistic effect on the Lachnospiraceae_NK4A136_group abundance. The study indicated that the mixture of artificial and natural light as well as the alignment of the proportions had beneficial influences on depression-anxiety-like levels, melatonin and corticosterone secretion, and the composition of the gut microbiota. KEY POINTS: • The mixed light can reduce the depression-anxiety level • The mixed light can maintain the secretion rhythm of melatonin and CORT • The mixed light can increase Lactobacillus and decrease Lachnospiraceae_NK4A136_group.


Assuntos
Microbioma Gastrointestinal , Melatonina , Ratos , Masculino , Animais , Melatonina/farmacologia , Ratos Sprague-Dawley , Corticosterona/farmacologia , Ritmo Circadiano/fisiologia , Luz
2.
Appl Microbiol Biotechnol ; 107(13): 4355-4368, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37209162

RESUMO

As common mental disorders, depression and anxiety impact people all around the world. Recent studies have found that the gut microbiome plays an important role in mental health. It is becoming possible to treat mental disorders by regulating the composition of the gut microbiota. Bacillus licheniformis is a probiotic used to treat gut diseases through balancing the gut microbiome during lasting years. Considering the role of gut microbiota in the gut-brain axis, this study used chronic unpredictable mild stress (CUMS) model rats to explore whether Bacillus licheniformis can prevent and treat depression and anxiety. We found that B. licheniformis reduced the depressive-like and anxiety-like behaviours of the rats during the CUMS process. Meanwhile, B. licheniformis changed the gut microbiota composition; increased the short chain fatty acids (SCFAs) in the colon, decreased kynurenine, norepinephrine, and glutamate levels; and increased the tryptophan, dopamine, epinephrine, and γ-aminobutyric acid (GABA) in the brain. After correlation analysis, we found Parabacteroides, Anaerostipes, Ruminococcus-2, and Blautia showed significant correlation with neurotransmitters and SCFAs, indicating the gut microbiome plays an important role in B. licheniformis reducing depressive-like behaviours. Therefore, this study suggested B. licheniformis may prevent depressive-like and anxiety-like behaviours while regulating the gut microbiota composition and increasing the SCFA levels in the colon to alter the levels of the neurotransmitters in the brain. KEY POINTS: • B. licheniformis reduced depressive-like and anxiety-like behaviours induced by the chronic unpredictable mild stress. • GABA levels in the brain are assonated with B. licheniformis regulating depressive-like and anxiety-like behaviours. • Gut microbiota composition alteration followed by metabolic changes may play a role in the GABA levels increase.


Assuntos
Bacillus licheniformis , Depressão , Ratos , Animais , Depressão/prevenção & controle , Depressão/metabolismo , Comportamento Animal/fisiologia , Ansiedade/prevenção & controle , Ansiedade/metabolismo , Neurotransmissores
3.
Appl Environ Microbiol ; 86(4)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31811045

RESUMO

Recent studies have suggested that the gut microbiome is modified in space analogs and that human health can be affected during actual spaceflight. However, the relationship between the gut microbiome and dietary intake in simulator subjects and astronauts remains unclear. Bioregenerative life support systems (BLSSs) are confined and self-sufficient ecosystems that enable exploration of this issue. Here, we correlate changes in gut microbes to the nutrient types present in controlled diets within subjects cohabitating in a BLSS. A metagenome-wide association study (MWAS) was performed on 55 shotgun-sequenced fecal samples longitudinally obtained from healthy Chinese subjects (n = 4 in total, n = 2 per sex) subjected to a 60-day BLSS stay and a specialized diet. Each food item was categorized based on nutrient type according to the Chinese Food Ingredients List (https://wenku.baidu.com/view/3f2b628488eb172ded630b1c59eef8c75fbf9514.html?from=search). The physical parameters of each subject fluctuated within normal medical ranges. Sex- and individual-specific differences and a trend of individual convergence of the gut microbiome in the BLSS were observed. Depletion of bacterial taxa such as Faecalibacterium prausnitzii, Bifidobacterium longum, and Escherichia coli and functional modules such as short-chain fatty acid (SCFA) production, as well as an increase in an unidentified Lachnospiraceae and glutamate/tryptophan synthesis, were observed in the BLSS. Correlation analysis showed that these compositional and functional changes were associated with energy/nutrient intake during the BLSS stay. Our findings suggest that the gut microbiota is a useful indicator for monitoring health and that individual nutritive diets should be considered according to sex and individual differences in simulations or in spaceflight.IMPORTANCE The gut microbiome shows individual specificity and is affected by sex, environment, and diet; gut microbiome imbalance is related to cancer, cardiovascular diseases, and autoimmune diseases. Astronauts are faced with a challenging environment and limited diet in outer space. Recent studies indicate that the gut microbiome is altered in space simulators and space, but what happens to intestinal microorganisms when astronauts cohabitate in a self-sufficient ecosystem in which they plant and cook food is unclear. Bioregenerative life support systems (BLSSs) are ideal devices to investigate the above issues because they are closed and self-sufficient. Four healthy Chinese subjects cohabitated in a confined BLSS for 60 days, during which their physical parameters and energy/nutrient intake were recorded. We performed a metagenome-wide association study (MWAS) on 55 shotgun-sequenced fecal samples longitudinally obtained from the subjects. Alterations occurred in the gut microbial composition and function, and their relationships with energy/nutrient intake were explored.


Assuntos
Ingestão de Energia , Microbioma Gastrointestinal , Sistemas de Manutenção da Vida , Metagenoma , Estado Nutricional , Adulto , China , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Adulto Jovem
4.
Environ Microbiol ; 20(10): 3643-3656, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30003647

RESUMO

Understanding the dynamics of human gut microbiota in space is crucial in maintaining astronaut health. Long-duration and deep-space manned exploration will require the in situ regeneration of resources, which would be achieved by an artificial ecosystem, such as a bioregenerative life-support system (BLSS). Potential response of human gut microbiota to particular lifestyle and dietary structure experienced in a BLSS remains unclear. Here, we report how a BLSS impacts the gut microbiota during a 105-day study that took place in the Chinese Lunar Palace 1 (LP1). The three crewmembers were provided with high-plant and high-fibre diet, and they followed a fixed schedule including extensive labour in the plant cabin. The gut microbiota composition of the three crewmembers showed convergence and similar dynamic change. Increased diversity and abundance of Lachnospira, Faecalibacterium and Blautia indicated that the LP1 dietary structure and the lifestyle may be beneficial for the maintenance of healthy gut microbiome. A stronger impact was found from the gut microbiome to the environment compared with the opposite direction, suggesting the necessity of environmental pathogen control in BLSS.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Adulto , Bactérias/classificação , Bactérias/genética , China , Dieta , Ecossistema , Feminino , Humanos , Intestinos/microbiologia , Estilo de Vida , Masculino , Voo Espacial , Simulação de Ambiente Espacial
6.
Stud Health Technol Inform ; 310: 139-143, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38269781

RESUMO

This paper describes the implementation of tools to support multiple language variants of the clinical information models that are used to define a model-driven EHR system. Beyond that, it describes how a complete EHR system can be created with multiple language variants, using the example of an EHR for clinical management of patients in a Fracture Liaison Service. A clinical information model, represented as ontology, was developed in the English language. This model was translated into Spanish and Mandarin, and the modeling tools were refined, on the basis of the experience gained. A workshop was then held, where participants used the EHR tools to create additional language variants in German, French, Portuguese, Arabic, Farsi, Urdu and Somali. The results from the workshop are presented here, with a brief summary of the lessons learned; further work will focus on improving the tools in response to those lessons.


Assuntos
Registros Eletrônicos de Saúde , Fraturas Ósseas , Humanos , Idioma , Etnicidade
7.
Lab Chip ; 24(9): 2537-2550, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623757

RESUMO

The diverse commensal microbiome of the human intestine has been considered to play a central role in depression. However, no host-microbiota co-culture system has been developed for depression, which hinders the controlled study of the interaction between depression and gut microbiota. We designed and manufactured a microfluidic-based gut-on-a-chip model containing the gut microbiota of patients with depression (depression-on-gut-chip, DoGC), which enables the extended co-culture of viable aerobic human intestinal epithelial cells and anaerobic gut microbiota, and allows the direct study of interactions between human gut microbiota and depression. We introduced representative gut microbiota from individuals with depression into our constructed DoGC model, successfully recapitulating the gut microbiota structure of depressed patients. This further led to the manifestation of physiological characteristics resembling depression, such as reduced gut barrier function, chronic low-grade inflammatory responses and decreased neurotransmitter 5-HT levels. Metabolome analysis of substances in the DoGC revealed a significant increase in lipopolysaccharides and tyrosine, while hyodeoxycholic acid, L-proline and L-threonine were significantly reduced, indicating the occurrence of depression. The proposed DoGC can serve as an effective platform for studying the gut microbiota of patients with depression, providing important cues for their roles in the pathology of this condition and acting as a powerful tool for personalized medicine.


Assuntos
Depressão , Microbioma Gastrointestinal , Dispositivos Lab-On-A-Chip , Humanos , Depressão/metabolismo , Depressão/microbiologia , Técnicas de Cocultura , Técnicas Analíticas Microfluídicas/instrumentação , Células CACO-2 , Modelos Biológicos
8.
Microbiome ; 11(1): 88, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095530

RESUMO

BACKGROUND: Psychological health risk is one of the most severe and complex risks in manned deep-space exploration and long-term closed environments. Recently, with the in-depth research of the microbiota-gut-brain axis, gut microbiota has been considered a new approach to maintain and improve psychological health. However, the correlation between gut microbiota and psychological changes inside long-term closed environments is still poorly understood. Herein, we used the "Lunar Palace 365" mission, a 1-year-long isolation study in the Lunar Palace 1 (a closed manned Bioregenerative Life Support System facility with excellent performance), to investigate the correlation between gut microbiota and psychological changes, in order to find some new potential psychobiotics to maintain and improve the psychological health of crew members. RESULTS: We report some altered gut microbiota that were associated with psychological changes in the long-term closed environment. Four potential psychobiotics (Bacteroides uniformis, Roseburia inulinivorans, Eubacterium rectale, and Faecalibacterium prausnitzii) were identified. On the basis of metagenomic, metaproteomic, and metabolomic analyses, the four potential psychobiotics improved mood mainly through three pathways related to nervous system functions: first, by fermenting dietary fibers, they may produce short-chain fatty acids, such as butyric and propionic acids; second, they may regulate amino acid metabolism pathways of aspartic acid, glutamic acid, tryptophan, etc. (e.g., converting glutamic acid to gamma-aminobutyric acid; converting tryptophan to serotonin, kynurenic acid, or tryptamine); and third, they may regulate other pathways, such as taurine and cortisol metabolism. Furthermore, the results of animal experiments confirmed the positive regulatory effect and mechanism of these potential psychobiotics on mood. CONCLUSIONS: These observations reveal that gut microbiota contributed to a robust effect on the maintenance and improvement of mental health in a long-term closed environment. Our findings represent a key step towards a better understanding the role of the gut microbiome in mammalian mental health during space flight and provide a basis for future efforts to develop microbiota-based countermeasures that mitigate risks to crew mental health during future long-term human space expeditions on the moon or Mars. This study also provides an essential reference for future applications of psychobiotics to neuropsychiatric treatments. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Animais , Humanos , Lua , Multiômica , Triptofano , Glutamatos , Mamíferos
9.
Nutrients ; 14(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35458204

RESUMO

Subhealth is a condition between health and disease that has become a common public health risk. Therefore, it is necessary to find more scientific therapies that can alleviate the symptoms of subhealth effectively. The gut microbiota is closely associated with subhealth. As a mature probiotic preparation, Bacillus licheniformis (B. licheniformis) can regulate gut microbiota balance, which indicates that B. licheniformis has the potential in regulating subhealth. This study produced the subhealthy rats by using chronic stress for 4 weeks to simulate psychological stress, with excessive antibiotics for 1 week to simulate bad living habits. Then, they were treated for 4 weeks with B. licheniformis. The results showed that B. licheniformis could recover the gut microbiota balance that had been destroyed by subhealth. The serum corticosterone and the proinflammatory cytokine tumor necrosis factor-α decreased after being treated by B. licheniformis. B. licheniformis also reduced glutamic acid and norepinephrine levels while increasing γ-aminobutyric acid and 5-hydroxytryptamine levels in the brain. In addition to the physiological changes, B. licheniformis decreased the anxiety-like behaviors of rats. Therefore B. licheniformis could alleviate the subhealth state, mainly by remodeling the gut microbiota, reducing inflammation, inhibiting the hypothalamic-pituitary-adrenal axis hyperactivity, regulating neurotransmitter levels, and easing a negative mood.


Assuntos
Bacillus licheniformis , Microbioma Gastrointestinal , Probióticos , Animais , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Probióticos/farmacologia , Ratos
10.
PLoS One ; 17(3): e0265430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35290412

RESUMO

Increasing evidences indicate that gut microbiota composition is associated with multiple inflammatory diseases. However, little is known about how gut microbiota changes with age and correlations with gut inflammation at sexual maturity stage of healthy individuals. Elucidating the dynamic changes of gut microbiota in healthy individuals at the sexual maturity stage and correlations with gut inflammation can provide clues for early risk assessment of gut diseases at the sexual maturity stage. Here, the shift in gut bacteria and its relationship with gut inflammation at the sexual maturity stage were explored. Sprague-Dawley rats at the sexual maturity stage were used in this study. 16S rRNA gene sequencing was performed to decipher gut bacteria shifts from the 7th week to the 9th week, and enzyme-linked immunosorbent assay (ELISA) was used to measure gut inflammation and gut barrier permeability. We found an increase in bacterial richness with age and a decrease in bacterial diversity with age. The gut bacteria were primarily dominated by the phyla Firmicutes and Bacteroides and the genus Prevotella. The relative abundance of Firmicutes increased with age, and the relative abundance of Bacteroides decreased with age. There was a positive correlation between body weight and the Firmicutes:Bacteroides ratio. More and more gut microbiota participated in the host gut inflammation and barrier permeability regulation with age. Ruminococcus was the only gut bacteria participated in gut inflammation and barrier permeability regulation both in the 7th week and the 15th week. These results provide a better understanding of the relationship between gut bacteria and gut inflammation in sexually mature rats and show that Ruminococcus may be a potential indicator for early risk assessment of gut inflammation.


Assuntos
Microbioma Gastrointestinal , Animais , Bactérias/genética , Bacteroides/genética , Firmicutes/genética , Inflamação , RNA Ribossômico 16S/genética , Ratos , Ratos Sprague-Dawley , Ruminococcus/genética
11.
Microbiome ; 10(1): 169, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224642

RESUMO

BACKGROUND: Chinese Lunar Palace 1 (LP1) is a ground-based bio-regenerative life support system (BLSS) test bed integrating highly efficient plant cultivation, animal protein production, urine nitrogen recycling, and bioconversion of solid waste. To date, there has been no molecular method-based detailed investigation of the fungal community and mycotoxin potential in BLSS habitats. To ensure safe BLSS design for actual space missions, we analyzed the LP1 surface mycobiome and mycotoxin potential during the Lunar Palace 365 project through internal transcribed spacer region 1 (ITS1) amplicon sequencing and quantitative polymerase chain reaction (qPCR) with primers specific for idh, ver1, nor1, tri5, and ITS1. RESULTS: The LP1 system exhibited significant differences in fungal community diversity compared to other confined habitats, with higher fungal alpha diversity and different community structures. Significant differences existed in the surface fungal communities of the LP1 habitat due to the presence of different occupant groups. However, there was no significant difference between fungal communities in the plant cabin with various occupants. Source tracker analysis shows that most of the surface fungi in LP1 originated from plants. Regardless of differences in occupants or location, there were no significant differences in mycotoxin gene copy number. CONCLUSIONS: Our study reveals that plants are the most crucial source of the surface fungal microbiome; however, occupant turnover can induce significant perturbations in the surface fungal community in a BLSS. Growing plants reduced fungal fluctuations, maintaining a healthy balance in the surface fungal microbiome and mycotoxin potential. Moreover, our study provides data important to (i) future risk considerations in crewed space missions with long-term residency, (ii) an optimized design and planning of a space mission that incorporates crew shifts and plant growth, and (iii) the expansion of our knowledge of indoor fungal communities with plant growth, which is essential to maintain safe working and living environments. Video Abstract.


Assuntos
Micobioma , Micotoxinas , Animais , Fungos/genética , Lua , Micobioma/genética , Nitrogênio , Plantas , Resíduos Sólidos
12.
Psychoneuroendocrinology ; 136: 105620, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34896741

RESUMO

Antibiotics exposure leads to gut microbiota dysbiosis, which increases the risk of anxiety and depression. However, the impact of ciprofloxacin and metronidazole exposure on chronic unpredictable mild stress-induced anxiety-like and depression-like behavior and underlying regulatory mechanism have not been well established. Here, chronic unpredictable mild stress model was established in adult male Sprague-Dawley rats. 16 S rRNA gene sequencing was used to decipher the gut microbiota. Enzyme-linked immunosorbent assay (ELIZA) was used to measure circulating cytokines in blood, gut barrier permeability biomarkers in feces, blood-brain barrier permeability biomarkers in brain. We found that antibiotics exposure significantly reduced the body weight, weight gain and liver health in chronic unpredictable mild stress treated rats. Behavioral testing suggested that antibiotics exposure reduced anxiety-like and depression-like behavior of rat. Antibiotics exposure possessed lower bacterial richness and diversity than that in the chronic unpredictable mild stress treated group. Compared with CUMS or CUMS-e group, higher abundances of Bacteroides, Lactobacillus, Lachnospiraceae and Akkermansia, lower abundances of S24-7, Blautia, Ruminocaceae, Ruminococcus and Prevotella were found in the gut microbiota from antibiotics exposure group. In addition, short-term antibiotics exposure increased the level of 5-hydroxytryptamine (5-HT) in brain. A significant correlation between certain bacteria and behavior of rats was observed, such as Roseburia. Our study uncovers the role for antibiotics in regulating chronic unpredictable mild stress-induced anxiety-like and depression-like behavior and suggest that short-term antibiotics exposure may be could reverse chronic unpredictable mild stress-induced anxiety-like and depression-like behavior.


Assuntos
Antibacterianos , Depressão , Animais , Antibacterianos/farmacologia , Ansiedade/tratamento farmacológico , Comportamento Animal , Depressão/tratamento farmacológico , Depressão/microbiologia , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Serotonina , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/microbiologia
13.
Microbiol Spectr ; 10(2): e0025422, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35254118

RESUMO

The long-term exposure to enclosed environments may lead to chronic stress in crewmembers and affect their physical and mental state. Salivary microbiome and biomarkers of immune function are increasingly used in human health research. The "Lunar Palace 365" project, which was a 370-day, multicrew, enclosed experiment carried out in a ground-based bioregenerative life support system platform named Lunar Palace 1 (LP1). We investigated the temporal dynamics of the salivary microbiota and cytokines in the third phase of the "Lunar Palace 365" experiment, including 1 month before entering LP1 and 1 month after leaving Lp1. Results reveal no regular temporal change pattern in these parameters (highly abundant phyla and genera) during the experiment. Although the crewmembers' oral microbiota temporally changed, it recovered quickly after the study subjects left the enclosed environment. The levels of IL-6, IL-10, and TNF-α in crewmembers' saliva decreased after leaving the normal environment for the enclosed environment, indicating that their oral inflammatory response level was reduced. There were significant individual differences in crewmembers' salivary microbiota, however, the shared living space reduced these differences. Moreover, air microbiota might have also played a significant role in reducing the individual differences. In summary, the enclosed environment did not result in persistent changes in human salivary microbiota and oral immunity. This study provides some insights for studying the effect of enclosed controlled environments on human immunity and microbiome. IMPORTANCE Long-term exposure to space environments may influence the human microbiome, the human immune system, and the intricate balance between the two, causing impaired immunity and increased disease susceptibility. It was previously believed that the main potential factors of long-term spaceflight on human health were microgravity and radiation. However, the effects of long-term enclosed environments on human health were unclear. Bioregenerative life support systems (BLSS) is a good experimental model for studying the effects of enclosed environments on human systemic microbiota and immune disorders. We monitored the microbiota and cytokines in the saliva of crewmembers before they entered BLSS, during their stay in BLSS, and after leaving BLSS. The results indicated long-term closed environment will not cause persistent changes in human salivary microbiota and immunity.


Assuntos
Microbiota , Voo Espacial , Citocinas , Humanos , Sistemas de Manutenção da Vida , Saliva
14.
Sci Total Environ ; 716: 136972, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32036130

RESUMO

Crewmembers are working and living in isolated environment lacking natural light and perception. Although their health problems have been documented, the mechanism has not been thoroughly investigated. The aim of the present study is to investigate the psychological and physiological influences of isolated environment on crewmember's health. On account of complexity of the isolated environment, it is necessary to have a manually controllable system to simulate research platform-Bioregenerative Life Support System (BLSS). Symptom checklist 90 (SCL-90) was used to complete emotional status test. Urine samples were collected for metabonomics and hormone secretion analysis. Fecal samples were collected for intestinal microorganisms analysis. Crewmembers (n = 4) followed strict daily schedule during the experimental period. Five emotional factors were significantly (P < 0.05) increased, differential metabolites were enriched in tryptophan metabolism pathway, the relative abundance of Prevotella decreased significantly (P < 0.0001) when crewmembers in isolated environment without natural light. Hormone (melatonin, cortisol) secretion rhythm also changed. Significant positive correlation (r = 0.805, P < 0.05) between cortisol secretion and anxiety was observed. In conclusion, natural light simulation in an isolated environment may have a positive effect on the physiological and psychological health of the crewmember.


Assuntos
Meio Ambiente , Ansiedade , Ritmo Circadiano , Humanos , Hidrocortisona , Melatonina , Saúde Mental
15.
J Am Soc Mass Spectrom ; 31(7): 1448-1458, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32320607

RESUMO

Metaproteomics has been used in combination with in vitro gut microbiota models to study drug-microbiome interactions. However, it remains unexplored whether the metaproteomics profile of in vitro gut microbiota responds differently to a same stimulus added at different growth phases. In this study, we cultured a human gut microbiota in 96-deep well plates using a previously validated model. Metformin was added during the lag, log, and stationary phases. Microbiome samples, collected at different time points, were analyzed by optical density and function by metaproteomic. The in vitro gut microbiota growth curves, taxonomy, and functional responses were different depending whether metformin was added during the lag, log, or stationary phases. The addition of drugs at the log phase may lead to the greatest decline of bacterial growth. Metaproteomic analysis suggests that the strength of the metformin effect on the gut microbiome functional profile may be ranked as lag phase > log phase > stationary phase. Metformin added at the lag phase may result in a significantly reduced level of the Clostridiales order and an increased level of the Bacteroides genus, which is different from stimulations during the rest of the growth phases. Metformin may also result in alterations of several pathways, including energy production and conversion, lipid transport and metabolism, translation, ribosomal structure, and biogenesis. Our results indicate that the timing for drug stimulation should be considered when studying drug-microbiome interactions in vitro.


Assuntos
Proteínas de Bactérias , Microbioma Gastrointestinal , Metformina/farmacologia , Proteômica/métodos , Adulto , Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , Cromatografia Líquida , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Humanos , Masculino , Espectrometria de Massas em Tandem
16.
Psychoneuroendocrinology ; 104: 132-142, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30844607

RESUMO

The realization that the microbiota-gut-brain axis plays a critical role in health and disease,including neuropsychiatric disorders, is rapidly advancing.An abundance of preclinical studies have shown that psychobiotics acting via the brain-gut-axis can affect brain development, function and behavior. Here we tested whether potential psychobiotics Faecalibacterium prausnitzii (ATCC 27766) has anxiolytic and antidepressant-like effects and reverse the impact of chronic unpredictable mild stress (CUMS) in rats. The experiment was divided into two phases, the first stage was CUMS procedure period and the second stage was convalescence period. SD male rats were administered Faecalibacterium prausnitzii for 4 weeks prior to testing during each period. Behavior, growth status, SCFAs produced, plasma cytokine, endocrinology and bone mineral density (BMD) were assessed. Our findings indicate that the administration of F. prausnitzii had preventive and therapeutic effects on CUMS-induced depression-like and anxiety-like behavior. In addition, F. prausnitzii administration could significantly prevent the reduction of the whole-body, femur and tibia BMD during the recovery phase. Moreover, the growth status of rats fed the F. prausnitzii was better than the rats by CUMS. And F. prausnitzii administration led to higher levels of SCFAs in the cecum and higher levels of cytokines interleukin-10 (IL-10) in the plasma, prevented the effects on corticosterone, C-reaction protein and cytokines interleukin-6 (IL-6) release induced by CUMS, changes that were associated with the effects seen on behavior. These results provide further evidence that gut microflora play a role in anxiety and depression. Subject to the confirmation of these results, probiotics might offer a useful novel therapeutic approach to neuropathological disorders and/or as adjunct therapies in psychiatric disorders and support the recent broadening of the definition of psychobiotic. Finally, this study supports F. prausnitzii has significant potential as a psychobiotic.


Assuntos
Faecalibacterium prausnitzii/metabolismo , Probióticos/farmacologia , Estresse Psicológico/tratamento farmacológico , Animais , Ansiolíticos/farmacologia , Ansiedade/metabolismo , Transtornos de Ansiedade/metabolismo , Comportamento Animal/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corticosterona/sangue , Citocinas/metabolismo , Depressão/metabolismo , Transtorno Depressivo/metabolismo , Modelos Animais de Doenças , Faecalibacterium prausnitzii/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/metabolismo
17.
Chem Sci ; 10(21): 5589-5595, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31293743

RESUMO

In this study, we report that optimal coordination-site exposure engineering in porous platinum brings ultrahigh activity and durability for the fuel cell oxygen reduction reaction (ORR). The porous platinum with numerous grain boundaries (GBP-Pt) consisting of 3 nm crystals exhibits 7 times higher ORR activity than commercial Pt. For fuel-cell measurements, the GBP-Pt catalyst based MEA exhibits high power density (1.49 W cm-2, 0.71 A mg-1 Pt for mass activity) and stability (12.9% loss after 30 K cycles), all of which far surpass the U.S. DOE target in 2020 (0.44 A mg-1 Pt for mass activity and 40% loss for stability). Density Functional Theory (DFT) calculation and X-ray Absorption Fine Structure (XAFS) results suggest that proper Pt coordination site exposure in grain boundaries provides optimal adsorption energies for oxygen species and high stability in the ORR, even superior to Pt(111) sites. We anticipated that coordination-site exposure engineering would open a new avenue to offer robust electrocatalysts for the fuel-cell oxygen reduction reaction.

18.
Adv Mater ; 29(28)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28513886

RESUMO

Electrochemical water splitting to produce hydrogen renders a promising pathway for renewable energy storage. Considering limited electrocatalysts have good oxygen-evolution reaction (OER) catalytic activity in acid solution while numerous economical materials show excellent OER catalytic performance in alkaline solution, developing new strategies that enhance the alkaline hydrogen-evolution reaction (HER) catalytic activity of cost-effective catalysts is highly desirable for achieving highly efficient overall water splitting. Herein, it is demonstrated that synergistic regulation of water dissociation and optimization of hydrogen adsorption free energy on electrocatalysts can significantly promote alkaline HER catalysis. Using oxygen-incorporated Co2 P as an example, the synergistic effect brings about 15-fold enhancement of alkaline HER activity. Theory calculations confirm that the water dissociation free energy of Co2 P decreases significantly after oxygen incorporation, and the hydrogen adsorption free energy can also be optimized simultaneously. The finding suggests the powerful effectiveness of synergetic regulation of water dissociation and optimization of hydrogen adsorption free energy on electrocatalysts for alkaline HER catalysis.

19.
Sheng Wu Gong Cheng Xue Bao ; 31(1): 115-22, 2015 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-26021085

RESUMO

Thioesterase catalyzes the hydrolysis of acyl-ACP and saturated fatty acyl chain. It plays a key role in the accumulation of medium chain fatty acids in vivo. In this study, to construct an engineering strain to produce MCFAs, the Arabidopsis acyl-ACP thioesterase gene AtFatA was amplified by PCR from cDNA of arabidopsis and double digested by EcoR I/Xba I, then linked to the plasmid digested with same enzymes to get the recombinant plasmid pPICZaA-AtFatA. We transformed the gene into Pichia pastoris GS115 by electroporation and screened positive colonies by YPD medium with Zeocin. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results showed that the recombinant enzyme had a molecular of 45 kDa band which was consistent with the predicted molecular mass and we constructed the expression system of gene AtFatA in fungus for the first time. Under shake-flask conditions, Gas Chromatograph-Mass Spectrometer-computer results indicated that recombinant strain produced 51% more extracellular free MCFAs than the wild and its yield reached 28.7% of all extracellular fatty acids. This figure is 10% higher than the control group. The result provides a new way to produce MCFAs.


Assuntos
Proteínas de Arabidopsis/biossíntese , Arabidopsis/genética , Tioléster Hidrolases/biossíntese , DNA Complementar , Eletroforese em Gel de Poliacrilamida , Eletroporação , Pichia/metabolismo , Plasmídeos , Reação em Cadeia da Polimerase , Proteínas Recombinantes/biossíntese , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA