RESUMO
The Chile Triple Junction, where the hot active spreading centre of the Chile Rise system subducts beneath the South American plate, offers a unique opportunity to understand the influence of the anomalous thermal regime on an otherwise cold continental margin. Integrated analysis of various geophysical and geological datasets, such as bathymetry, heat flow measured directly by thermal probes and calculated from gas hydrate distribution limits, thermal conductivities, and piston cores, have improved the knowledge about the hydrogeological system. In addition, rock dredging has evidenced the volcanism associated with ridge subduction. Here, we argue that the localized high heat flow over the toe of the accretionary prism results from fluid advection promoted by pressure-driven discharge (i.e., dewatering/discharge caused by horizontal compression of accreted sediments) as reported previously. However, by computing the new heat flow values with legacy data in the study area, we raise the assumption that these anomalous heat flow values are also promoted by the eastern flank of the currently subducting Chile Rise. Part of the rift axis is located just below the toe of the wedge, where active deformation and vigorous fluid advection are most intense, enhanced by the proximity of the young volcanic chain. Our results provide valuable information to current and future studies related to hydrothermal circulation, seismicity, volcanism, gas hydrate stability, and fluid venting in this natural laboratory.
RESUMO
The Kamchatka Peninsula is a prominent and wide volcanic arc located near the northern edge of the Pacific Plate. It has highly active volcanic chains and groups, and characteristic lavas that include adakitic rocks. In the north of the peninsula adjacent to the triple junction, some additional processes such as hot asthenospheric injection around the slab edge and seamount subduction operate, which might enhance local magmatism. In the forearc area of the northeastern part of the peninsula, monogenetic volcanic cones dated at <1 Ma were found. Despite their limited spatiotemporal occurrence, remarkable variations were observed, including primitive basalt and high-Mg andesite containing high-Ni (up to 6300 ppm) olivine. The melting and crystallization conditions of these lavas indicate a locally warm slab, facilitating dehydration beneath the forearc region, and a relatively cold overlying mantle wedge fluxed heterogeneously by slab-derived fluids. It is suggested that the collapse of a subducted seamount triggered the ascent of Si-rich fluids to vein the wedge peridotite and formed a peridotite-pyroxenite source, causing the temporal evolution of local magmatism with wide compositional range.