Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 30(21): 37925-37937, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258371

RESUMO

Standard imaging systems are designed for 2D representation of objects, while information about the third dimension remains implicit, as imaging-based distance estimation is a difficult challenge. Existing long-range distance estimation technologies mostly rely on active emission of signal, which as a subsystem, constitutes a significant portion of the complexity, size and cost of the active-ranging apparatus. Despite the appeal of alleviating the requirement for signal-emission, passive distance estimation methods are essentially nonexistent for ranges greater than a few hundreds of meters. Here, we present monocular long-range, telescope-based passive ranging, realized by integration of point-spread-function engineering into a telescope, extending the scale of point-spread-function engineering-based ranging to distances where it has never been tested before. We provide experimental demonstrations of the optical system in a variety of challenging imaging scenarios, including adversarial weather conditions, dynamic targets and scenes of diversified textures, at distances extending beyond 1.7 km. We conclude with brief quantification of the effect of atmospheric turbulence on estimation precision, which becomes a significant error source in long-range optical imaging.

2.
Phys Rev Lett ; 120(11): 113901, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29601765

RESUMO

We report the first observation of lasing topological edge states in a 1D Su-Schrieffer-Heeger active array of microring resonators. We show that the judicious use of non-Hermiticity can promote single edge-mode lasing in such arrays. Our experimental and theoretical results demonstrate that, in the presence of chiral-time symmetry, this non-Hermitian topological structure can experience phase transitions that are dictated by a complex geometric phase. Our work may pave the way towards understanding the fundamental aspects associated with the interplay among non-Hermiticity, nonlinearity, and topology in active systems.

3.
Phys Rev Lett ; 116(16): 163901, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27152805

RESUMO

One-dimensional models with topological band structures represent a simple and versatile platform to demonstrate novel topological concepts. Here we experimentally study topologically protected states in silicon at the interface between two dimer chains with different Zak phases. Furthermore, we propose and demonstrate that, in a system where topological and trivial defect modes coexist, we can probe them independently. Tuning the configuration of the interface, we observe the transition between a single topological defect and a compound trivial defect state. These results provide a new paradigm for topologically protected waveguiding in a complementary metal-oxide-semiconductor compatible platform and highlight the novel concept of isolating topological and trivial defect modes in the same system that can have important implications in topological physics.

5.
Science ; 359(6381)2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29420263

RESUMO

Physical systems exhibiting topological invariants are naturally endowed with robustness against perturbations, as manifested in topological insulators-materials exhibiting robust electron transport, immune from scattering by defects and disorder. Recent years have witnessed intense efforts toward exploiting these phenomena in photonics. Here we demonstrate a nonmagnetic topological insulator laser system exhibiting topologically protected transport in the cavity. Its topological properties give rise to single-mode lasing, robustness against defects, and considerably higher slope efficiencies compared to the topologically trivial counterparts. We further exploit the properties of active topological platforms by assembling the system from S-chiral microresonators, enforcing predetermined unidirectional lasing without magnetic fields. This work paves the way toward active topological devices with exciting properties and functionalities.

6.
Science ; 359(6381)2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29420260

RESUMO

Topological insulators are phases of matter characterized by topological edge states that propagate in a unidirectional manner that is robust to imperfections and disorder. These attributes make topological insulator systems ideal candidates for enabling applications in quantum computation and spintronics. We propose a concept that exploits topological effects in a unique way: the topological insulator laser. These are lasers whose lasing mode exhibits topologically protected transport without magnetic fields. The underlying topological properties lead to a highly efficient laser, robust to defects and disorder, with single-mode lasing even at very high gain values. The topological insulator laser alters current understanding of the interplay between disorder and lasing, and at the same time opens exciting possibilities in topological physics, such as topologically protected transport in systems with gain. On the technological side, the topological insulator laser provides a route to arrays of semiconductor lasers that operate as one single-mode high-power laser coupled efficiently into an output port.

7.
Nat Commun ; 8(1): 650, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28935885

RESUMO

The wave-like nature of electrons has been known for almost a century, but only in recent years has the ability to shape the wavefunction of EBeams (Electron-Beams) become experimentally accessible. Various EBeam wavefunctions have been demonstrated, such as vortex, self-accelerating, Bessel EBeams etc. However, none has attempted to manipulate multi-electron beams, because the repulsion between electrons rapidly alters the beam shape. Here, we show how interference effects of the quantum wavefunction describing multiple electrons can be used to exactly balance both the repulsion and diffraction-broadening. We propose non-diffracting wavepackets of multiple electrons, which can also carry orbital angular momentum. Such wavefunction shaping facilitates the use of multi-electron beams in electron microscopy with higher current without compromising on spatial resolution. Simulating the quantum evolution in three-dimensions and time, we show that imprinting such wavefunctions on electron pulses leads to shape-preserving multi-electrons ultrashort pulses. Our scheme applies to any beams of charged particles, such as protons and ion beams.Vortex electron beams are generated using single electrons but their low beam-density is a limitation in electron microscopy. Here the authors propose a scheme for the realization of non-diffracting electron beams by shaping wavepackets of multiple electrons and including electron-electron interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA