Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34770625

RESUMO

This article proposes a new method for detecting slight refractive index changes under conditions of unknown polarization state. It is argued that an insignificant modification of the tilted fiber Bragg grating (TFBG) structure and selecting the appropriate spectral region allows us to accurately track changes in the refractive index. It has also been proven that the method can be easily made insensitive to temperature and that the sensitivity to changes in the polarization plane of the input light can be significantly reduced, which is crucial in later practical applications. Analytes in the form of an aqueous glucose solution were used to calibrate the sensor. The proposed method, based on perpendicular tilted fiber Bragg grating (P-TFBG), has a wide range of universality because its development and slight modification will enable the detection of glucose, pathogens, and viruses.


Assuntos
Refração Ocular , Refratometria
2.
Sensors (Basel) ; 21(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34833601

RESUMO

Tilted fibre Bragg grating (TFBG) are used as sensors to determine many quantities such as refractive index, temperature, stress, rotation and bending. The TFBG spectrum contains a lot of information and various algorithms are used for its analysis. However, most of these algorithms are dedicated to the analysis of spectral changes under the influence of the refractive index. The most popular algorithm used for this purpose is to calculate the area occupied by cladding modes. Among the remaining algorithms, there are those that use the determination of the cut-off wavelength as a surrounding refractive index (SRI) indicator. Projection on the wavelength axis can also be used to calculate the bending radius of the fibre. However, this is a more difficult task than with SRI, because the mode decay in bending is not so easy to catch. In this article, we propose a multi-step algorithm that allows to determine the impact of bending on mode leakage. At the same time, the place on the wavelength from the side of the Bragg mode and the ghost mode is determined, which represents the cladding mode radiated from the cladding under the influence of bending. The developed algorithm consists of the following operations carried out on the transmission spectrum: Fourier filtering, calculation of the cumulative value of the spectral length, low-pass filtering of the cumulative curve or its corresponding polynomial approximation, determination of the first and second derivative of the approximated curve, and projection of the second derivative of the curve on the wavelength axis. The shift of the wavelength determined in this way indirectly indicates the bending radius of the optical fibre. Based on multiple measurements, we prove that the presented algorithm provides better results when determining the bending radius compared to other algorithms adopted for this purpose and proposed for SRI measurements. Additionally, we analyse the method of determining the shift of a fragment of the spectrum using the phase of the discrete Fourier transform.

3.
Sensors (Basel) ; 21(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34960601

RESUMO

This study analyzes the existing methods for studying nasal breathing. The aspects of verifying the results of rhinomanometric diagnostics according to the data of spiral computed tomography are considered, and the methodological features of dynamic posterior active rhinomanometry and the main indicators of respiration are also analyzed. The possibilities of testing respiratory olfactory disorders are considered, the analysis of errors in rhinomanometric measurements is carried out. In the conclusions, practical recommendations are given that have been developed for the design and operation of tools for functional diagnostics of nasal breathing disorders. It is advisable, according to the data of dynamic rhinomanometry, to assess the functioning of the nasal valve by the shape of the air flow rate signals during forced breathing and the structures of the soft palate by the residual nasopharyngeal pressure drop. It is imperative to take into account not only the maximum coefficient of aerodynamic nose drag, but also the values of the pressure drop and air flow rate in the area of transition to the turbulent quadratic flow regime. From the point of view of the physiology of the nasal response, it is necessary to look at the dynamic change to the current mode, given the hour of the forced response, so that it will ensure the maximum possible acidity in the legend. When planning functional rhinosurgical operations, it is necessary to apply the calculation method using computed tomography, which makes it possible to predict the functional result of surgery.


Assuntos
Nariz , Respiração , Nariz/diagnóstico por imagem , Taxa Respiratória , Rinomanometria , Tomografia Computadorizada por Raios X
4.
Sensors (Basel) ; 20(9)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384715

RESUMO

This article presents the use of a sensor with fiber Bragg grating along with an interrogation system used for monitoring the overhead lines' wire elongation. The possible interrogation methods based on adjusted filters were considered. In the experimental part, three types of fiber Bragg grating pairs, characterized by a small shift in spectra in pairs and gratings with exact matching, were examined. The study showed that, by choosing the appropriate mechanical parameters of the elongation transformer with the optical parameters of the sensor and dedicated filter, the optomechanical system can be adjusted to the required range of overhead line wire sag observation. The range of sag depends on the distance between the poles, the wire type, and its real length in the span, which effectively determines the sag.

5.
Sensors (Basel) ; 18(1)2018 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-29361714

RESUMO

A method of measuring the power line wire sag using optical sensors that are insensitive to high electromagnetic fields was proposed. The advantage of this technique is that it is a non-invasive measurement of power line wire elongation using a unique optomechanical system. The proposed method replaces the sag of the power line wire with an extension of the control sample and then an expansion of the attached chirped fiber Bragg grating. This paper presents the results of the first measurements made on real aluminum-conducting steel-reinforced wire, frequently used for power line construction. It has been shown that the proper selection of the CFBG (chirped fiber Bragg grating) transducer and the appropriate choice of optical parameters of such a sensor will allow for high sensitivity of the line wire elongation and sag while reducing the sensitivity to the temperature. It has been shown that with a simple optomechanical system, a non-invasive measurement of the power line wire sag that is insensitive to temperature changes and the influence of high electromagnetic fields can be achieved.

6.
Opt Express ; 24(26): 29922-29929, 2016 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-28059376

RESUMO

In this paper, we present a method for the simultaneous measurement of rotation and displacement or rotation and bending using single tilted fiber Bragg grating (TFBG). The insensitivity of the proposed system to temperature changes and the stretching direction of the fiber section in the sensing structure have been demonstrated. The experimentally determined sensitivities for rotation, displacement and bending are as follows: -0.0018 1/deg., 0.0054 nm/mm, and -0.055 1/mm over the measurement ranges of approximately 25-80 degrees, 34-74 mm, and 26.4-20 mm, respectively. The presented measurement system is versatile due to the ability to tune the measurement range by changing the fiber-loop radius.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA