RESUMO
Otoliths (ear-stones) in the inner ears of vertebrates containing visible year zones are used extensively to determine fish age. Analysis of otoliths is a time-consuming and difficult task that requires the education of human experts. Human age estimates are inconsistent, as several readings by the same human expert might result in different ages assigned to the same otolith, in addition to an inherent bias between readers. To improve efficiency and resolve inconsistent results in the age reading from otolith images by human experts, an automated procedure based on convolutional neural networks (CNNs), a class of deep learning models suitable for image processing, is investigated. We applied CNNs that perform image regression to estimate the age of Greenland halibut (Reinhardtius hippoglossoides) with good results for individual ages as well as the overall age distribution, with an average CV of about 10% relative to the read ages by experts. In addition, the density distribution of predicted ages resembles the density distribution of the ground truth. By using k*l-fold cross-validation, we test all available samples, and we show that the results are rather sensitive to the choice of test set. Finally, we apply explanation techniques to analyze the decision process of deep learning models. In particular, we produce heatmaps indicating which input features that are the most important in the computation of predicted age.
Assuntos
Aprendizado Profundo , Linguado , Animais , Humanos , Membrana dos Otólitos , Groenlândia , Redes Neurais de ComputaçãoRESUMO
Age-reading of fish otoliths (ear stones) is important for the sustainable management of fish resources. However, the procedure is challenging and requires experienced readers to carefully examine annual growth zones. In a recent study, convolutional neural networks (CNNs) have been demonstrated to perform reasonably well on automatically predicting fish age from otolith images. In the present study, we carefully investigate the prediction rule learned by such neural networks to provide insight into the features that identify certain fish age ranges. For this purpose, a recent technique for visualizing and analyzing the predictions of the neural networks was applied to different versions of the otolith images. The results indicate that supplementary knowledge about the internal structure improves the results for the youngest age groups, compared to using only the contour shape attribute of the otolith. However, the contour shape and size attributes are, in general, sufficient for older age groups. In addition, within specific age ranges we find that the network tends to focus on particular areas of the otoliths and that the most discriminating factors seem to be related to the central part and the outer edge of the otolith. Explaining age predictions from otolith images as done in this study will hopefully help build confidence in the potential of deep learning algorithms for automatic age prediction, as well as improve the quality of the age estimation.
Assuntos
Peixes/crescimento & desenvolvimento , Redes Neurais de Computação , Membrana dos Otólitos/crescimento & desenvolvimento , Animais , Membrana dos Otólitos/anatomia & histologiaRESUMO
The age structure of a fish population has important implications for recruitment processes and population fluctuations, and is a key input to fisheries-assessment models. The current method of determining age structure relies on manually reading age from otoliths, and the process is labor intensive and dependent on specialist expertise. Recent advances in machine learning have provided methods that have been remarkably successful in a variety of settings, with potential to automate analysis that previously required manual curation. Machine learning models have previously been successfully applied to object recognition and similar image analysis tasks. Here we investigate whether deep learning models can also be used for estimating the age of otoliths from images. We adapt a pre-trained convolutional neural network designed for object recognition, to estimate the age of fish from otolith images. The model is trained and validated on a large collection of images of Greenland halibut otoliths. We show that the model works well, and that its precision is comparable to documented precision obtained by human experts. Automating this analysis may help to improve consistency, lower cost, and increase the extent of age estimation. Given that adequate data are available, this method could also be used to estimate age of other species using images of otoliths or fish scales.