RESUMO
The bed nucleus of the stria terminalis (BNST) is a brain region important for regulating anxiety-related behavior in both humans and rodents. Here we used a chemogenetic strategy to investigate how engagement of G protein-coupled receptor (GPCR) signaling cascades in genetically defined GABAergic BNST neurons modulates anxiety-related behavior and downstream circuit function. We saw that stimulation of vesicular γ-aminobutyric acid (GABA) transporter (VGAT)-expressing BNST neurons using hM3Dq, but neither hM4Di nor rM3Ds designer receptors exclusively activated by a designer drug (DREADD), promotes anxiety-like behavior. Further, we identified that activation of hM3Dq receptors in BNST VGAT neurons can induce a long-term depression-like state of glutamatergic synaptic transmission, indicating DREADD-induced changes in synaptic plasticity. Further, we used DREADD-assisted metabolic mapping to profile brain-wide network activity following activation of Gq-mediated signaling in BNST VGAT neurons and saw increased activity within ventral midbrain structures, including the ventral tegmental area and hindbrain structures such as the locus coeruleus and parabrachial nucleus. These results highlight that Gq-mediated signaling in BNST VGAT neurons can drive downstream network activity that correlates with anxiety-like behavior and points to the importance of identifying endogenous GPCRs within genetically defined cell populations. We next used a microfluidics approach to profile the receptorome of single BNST VGAT neurons. This approach yielded multiple Gq-coupled receptors that are associated with anxiety-like behavior and several potential novel candidates for regulation of anxiety-like behavior. From this, we identified that stimulation of the Gq-coupled receptor 5-HT2CR in the BNST is sufficient to elevate anxiety-like behavior in an acoustic startle task. Together, these results provide a novel profile of receptors within genetically defined BNST VGAT neurons that may serve as therapeutic targets for regulating anxiety states and provide a blueprint for examining how G-protein-mediated signaling in a genetically defined cell type can be used to assess behavior and brain-wide circuit function.
Assuntos
Ansiedade/genética , Ansiedade/patologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Neurônios/fisiologia , Núcleos Septais/patologia , Transdução de Sinais/fisiologia , Animais , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Mapeamento Encefálico , Antagonistas de Receptores de Canabinoides/farmacologia , Clozapina/análogos & derivados , Clozapina/farmacologia , Adaptação à Escuridão/efeitos dos fármacos , Adaptação à Escuridão/genética , Modelos Animais de Doenças , Estrenos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Comportamento Exploratório/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Piperazinas/farmacologia , Pirrolidinonas/farmacologia , RNA Mensageiro/metabolismo , Receptores de Droga/efeitos dos fármacos , Receptores de Droga/fisiologia , Rimonabanto/farmacologia , Núcleos Septais/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/uso terapêutico , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismoRESUMO
Eating disorders are complex brain disorders that afflict millions of individuals worldwide. The etiology of these diseases is not fully understood, but a growing body of literature suggests that stress and anxiety may play a critical role in their development. As our understanding of the genetic and environmental factors that contribute to disease in clinical populations like anorexia nervosa, bulimia nervosa and binge eating disorder continue to grow, neuroscientists are using animal models to understand the neurobiology of stress and feeding. We hypothesize that eating disorder clinical phenotypes may result from stress-induced maladaptive alterations in neural circuits that regulate feeding, and that these circuits can be neurochemically isolated using animal model of eating disorders.