Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R571-R580, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35412389

RESUMO

Hyperglycemic conditions are prodromal to blood-brain barrier (BBB) impairment. The BBB comprises cerebral microvessel endothelial cells (CMECs) that are surrounded by astrocytic foot processes. Astrocytes express high levels of gap junction connexin 43 (Cx43), which play an important role in autocrine and paracrine signaling interactions that mediate gliovascular cross talk through secreted products. One of the key factors of the astrocytic "secretome" is vascular endothelial growth factor (VEGF), a potent angiogenic factor that can disrupt BBB integrity. We hypothesize that high-glucose conditions change the astrocytic expression of Cx43 and increase VEGF secretion leading to impairment of CMEC barrier properties in vitro and in vivo. Using coculture of neonatal rat astrocytes and CMEC, we mimic hyperglycemic conditions using high-glucose (HG) feeding media and show a significant decrease in Cx43 expression and the corresponding increase in secreted VEGF. This result was confirmed by the analyses of Cx43 and VEGF protein levels in the brain cortex samples from the type 2 diabetic rat (T2DN). To further characterize inducible changes in BBB, we measured transendothelial cell electrical resistance (TEER) and tight junction protein levels in cocultured conditioned astrocytes with isolated rat CMEC. The coculture monolayer's integrity and permeability were significantly compromised by HG media exposure, which was indicated by decreased TEER without a change in tight junction protein levels in CMEC. Our study provides insight into gliovascular adaptations to increased glucose levels resulting in impaired cellular cross talk between astrocytes and CMEC, which could be one explanation for cerebral BBB disruption in diabetic conditions.


Assuntos
Astrócitos , Células Endoteliais , Animais , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Células Cultivadas , Técnicas de Cocultura , Conexina 43/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Microvasos/metabolismo , Ratos , Proteínas de Junções Íntimas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Appl Opt ; 60(10): 2907-2911, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798172

RESUMO

There is a great need for cost-efficient non-invasive medical diagnostic tools for analyzing humanly exhaled air. Compared to present day methods, photoacoustic spectroscopy (PAS) can provide a compact and portable (bedside), sensitive and inexpensive solution. We demonstrate a novel portable photoacoustic spectroscopic platform for isotopic measurements of methane (CH4). We identify and discriminate the 12CH4- and 13CH4 isotopologues and determine their mixing ratio. An Allan deviation analysis shows that the noise equivalent concentration for CH4 is 200 ppt (pmol/mol) at 100 s of integration time, corresponding to a normalized noise equivalent absorption coefficient of 5.1×10-9Wcm-1Hz-1/2, potentially making the PAS sensor a truly disruptive instrument for bedside monitoring using isotope tracers by providing real-time metabolism data to clinical personnel.


Assuntos
Testes Respiratórios/métodos , Isótopos de Carbono/química , Metano/análise , Técnicas Fotoacústicas/métodos , Técnicas Biossensoriais , Testes Respiratórios/instrumentação , Desenho de Equipamento , Expiração , Humanos , Técnicas Fotoacústicas/instrumentação , Espectrofotometria Infravermelho
3.
Molecules ; 26(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503854

RESUMO

We report on the use of quartz-enhanced photoacoustic spectroscopy for continuous carbon-dioxide measurements in humid air over a period of six days. The presence of water molecules alters the relaxation rate of the target molecules and thus the amplitude of the photoacoustic signal. Prior to the measurements, the photoacoustic sensor system was pre-calibrated using CO2 mole fractions in the range of 0-10-3 (0-1000 ppm) and at different relative humidities between 0% and 45%, while assuming a model hypothesis that allowed the photoacoustic signal to be perturbed linearly by H2O content. This calibration technique was compared against an alternative learning-based method, where sensor data from the first two days of the six-day period were used for self-calibration. A commercial non-dispersive infrared sensor was used as a CO2 reference sensor and provided the benchmark for the two calibration procedures. In our case, the self-calibrated method proved to be both more accurate and precise.


Assuntos
Técnicas Fotoacústicas/métodos , Quartzo/química , Calibragem , Dióxido de Carbono/química , Análise Espectral/métodos , Água/química
4.
Sensors (Basel) ; 20(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825631

RESUMO

Quartz-enhanced photoacoustic sensing is a promising method for low-concentration trace-gas monitoring due to the resonant signal enhancement provided by a high-Q quartz tuning fork. However, quartz-enhanced photoacoustic spectroscopy (QEPAS) is associated with a relatively slow acoustic decay, which results in a reduced spectral resolution and signal-to-noise ratio as the wavelength tuning rate is increased. In this work, we investigate the influence of wavelength scan rate on the spectral resolution and signal-to-noise ratio of QEPAS sensors. We demonstrate the acquisition of photoacoustic spectra from 3.1 µm to 3.6 µm using a tunable mid-infrared optical parametric oscillator. The spectra are attained using wavelength scan rates differing by more than two orders of magnitude (from 0.3 nm s-1 to 96 nm s-1). With this variation in scan rate, the spectral resolution is found to change from 2.5 cm-1 to 9 cm-1. The investigated gas samples are methane (in nitrogen) and a gas mixture consisting of methane, water, and ethanol. For the gas mixture, the reduced spectral resolution at fast scan rates significantly complicates the quantification of constituent gas concentrations.

5.
Appl Opt ; 58(2): 250-256, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30645301

RESUMO

We demonstrate the usefulness of a nanosecond-pulsed single-mode mid-infrared (MIR) optical parametric oscillator (OPO) for photoacoustic (PA) spectroscopic measurements. The maximum wavelength ranges for the signal and idler are 1.4 µm to 1.7 µm and 2.8 µm to 4.6 µm, respectively, with a MIR output power of up to 500 mW, making the OPO useful for different spectroscopic PA trace-gas measurements targeting the major market opportunity of environmental monitoring and breath gas analysis. We perform spectroscopic measurements of methane (CH4), nitrogen dioxide (NO2), and ammonia (NH3) in the 2.8 µm to 3.7 µm wavelength region. The measurements were conducted with a constant flow rate of 300 mL/min, thus demonstrating the suitability of the gas sensor for real-time trace-gas measurements. The acquired spectra are compared with data from the HITRAN database, and good agreement is found, demonstrating a resolution bandwidth of 1.5 cm1. An Allan deviation analysis shows that the detection limit for methane at optimum integration time for the PA sensor is 8 ppbV (nmol/mol) at 105 s of integration time, corresponding to a normalized noise equivalent absorption coefficient of 2.9×10-7 W cm-1 Hz-1/2.

6.
Appl Opt ; 57(4): 802-806, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400761

RESUMO

A photoacoustic (PA) sensor for fast and real-time gas sensing is demonstrated. The PA sensor is a stand-alone system controlled by a field-programmable gate array. The PA cell has been designed for flow noise immunity using computational fluid dynamics (CFD) analysis. The aim of the CFD analysis was to investigate and minimize the influence of the gas distribution and flow noise on the PA signal. PA measurements were conducted at different flow rates by exciting molecular C-H stretch vibrational bands of hexane (C6H14) and decane (C10H22) molecules in clean air at 2950 cm-1 (3.38 µm) with a custom-made mid-infrared interband cascade laser. We observe a (1σ, standard deviation) sensitivity of 0.4±0.1 ppb (nmol/mol) for hexane in clean air at flow rates up to 1.7 L/min, corresponding to a normalized noise equivalent absorption coefficient of 2.5×10-9 W cm-1 Hz-1/2, demonstrating high sensitivity and fast real-time gas analysis. An Allan deviation analysis for decane shows that the detection limit at optimum integration time is 0.25 ppbV (nmol/mol).

7.
J Neurochem ; 140(5): 814-825, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28002622

RESUMO

Epoxyeicosatrienoic acids (EETs) are synthesized in astrocytes, and inhibitors of soluble epoxide hydrolase (sEH), which hydrolyzes EETs, reduce infarct volume in ischemic stroke. Astrocytes can release protective neurotrophic factors, such as vascular endothelial growth factor (VEGF). We found that addition of sEH inhibitors to rat cultured astrocytes immediately after oxygen-glucose deprivation (OGD) markedly increased VEGF concentration in the medium 48 h later and the effect was blocked by an EET antagonist. The sEH inhibitors increased EET concentrations to levels capable of increasing VEGF. When the sEH inhibitors were removed from the medium at 48 h, the increase in VEGF persisted for an additional 48 h. Neurons exposed to OGD and subsequently to astrocyte medium previously conditioned with OGD plus sEH inhibitors showed increased phosphorylation of their VEGF receptor-2, less TUNEL staining, and increased phosphorylation of Akt, which was blocked by a VEGF receptor-2 antagonist. Our findings indicate that sEH inhibitors, applied to cultured astrocytes after an ischemia-like insult, can increase VEGF secretion. The released VEGF then enhances Akt-enabled cell survival signaling in neurons through activation of VEGF receptor-2 leading to less neuronal cell death. These results suggest a new strategy by which astrocytes can be leveraged to support neuroprotection.


Assuntos
Astrócitos/metabolismo , Hipóxia Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Glucose/deficiência , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultivo Condicionados , Feminino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteína Oncogênica v-akt/metabolismo , Fosforilação , Gravidez , Ratos , Ratos Sprague-Dawley , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
J Synchrotron Radiat ; 24(Pt 5): 919-924, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28862613

RESUMO

The National Synchrotron Light Source (NSLS) ceased operation in September 2014 and was succeeded by NSLS-II. There were four in-vacuum undulators (IVUs) in operation at NSLS. The most recently constructed IVU for NSLS was the mini-gap undulator (MGU-X25, to be renamed IVU18 for NSLS-II), which was constructed in 2006. This device was selected to be reused for the New York Structural Biology Consortium Microdiffraction beamline at NSLS-II. At the time of construction, IVU18 was a state-of-the-art undulator designed to be operated as a cryogenic permanent-magnet undulator. Due to the more stringent field quality and impedance requirements of the NSLS-II ring, the transition region was redesigned. The control system was also updated to NSLS-II specifications. This paper reports the details of the IVU18 refurbishment activities including additional magnetic measurement and tuning.

9.
Opt Express ; 25(3): 1806-1814, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519033

RESUMO

We demonstrate an online (in-situ) sensor for continuous detection of oil contamination in compressed air systems complying with the ISO-8573 standard. The sensor is based on the photo-acoustic (PA) effect. The online and real-time PA sensor system has the potential to benefit a wide range of users that require high purity compressed air. Among these are hospitals, pharmaceutical industries, electronics manufacturers, and clean room facilities. The sensor was tested for sensitivity, repeatability, robustness to molecular cross-interference, and stability of calibration. Explicit measurements of hexane (C6H14) and decane (C10H22) vapors via excitation of molecular C-H vibrations at approx. 2950 cm-1 (3.38 µm) were conducted with a custom made interband cascade laser (ICL). For the decane measurements a (1 σ) standard deviation (STD) of 0.3 ppb was demonstrated, which corresponds to a normalized noise equivalent absorption (NNEA) coefficient for the prototype PA sensor of 2.8×10-9 W cm-1 Hz1/2.

10.
Cell Mol Neurobiol ; 37(7): 1279-1286, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28110484

RESUMO

20-Hydroxyeicosatetraenoic acid (20-HETE), a potent vasoconstrictor, is a cytochrome P450 (CYP) 4A/4F-derived metabolite of arachidonic acid. Inhibition of 20-HETE synthesis protects brain from ischemic injury. However, that protection is not associated with changes in cerebral blood flow. The present study examined whether CYP4A isoforms are expressed in neurons, whether they produce 20-HETE in neurons, and whether neuronally derived 20-HETE exerts direct neurotoxicity after oxygen-glucose deprivation (OGD). The expression of Cyp4a10 and Cyp4a12a mRNA in cultured mouse cortical neurons increased significantly at 1 and 3 h after exposure to 1 h of OGD. Reoxygenation also markedly augmented the expression of CYP4A protein in neurons and increased 20-HETE levels in the culture medium. Cell viability after OGD increased after treatment with a 20-HETE synthesis inhibitor or an antagonist. That effect was reversed by co-administration of a 20-HETE agonist. These results indicate that neurons express Cyp4a10 and 4a12a, that expression of these isoforms is upregulated by OGD stress, and that neuronally derived 20-HETE directly contributes to neuronal death after reoxygenation.


Assuntos
Córtex Cerebral/metabolismo , Sistema Enzimático do Citocromo P-450/biossíntese , Glucose/deficiência , Ácidos Hidroxieicosatetraenoicos/biossíntese , Neurônios/metabolismo , Oxigênio/metabolismo , Animais , Hipóxia Celular/fisiologia , Células Cultivadas , Córtex Cerebral/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , Isoformas de Proteínas/biossíntese , Regulação para Cima/fisiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-27174801

RESUMO

Astrocytes secrete vasodilator and vasoconstrictor factors via end feet processes, altering blood flow to meet neuronal metabolic demand. Compared to what is known about the ability of astrocytes to release factors that dilate local cerebral vasculature, very little is known regarding the source and identity of astrocyte derived constricting factors. The present study investigated if astrocytes express CYP 4A ω-hydroxylase and metabolize arachidonic acid (AA) to 20-hydroxyeicotetraenoic acid (20-HETE) that regulates KCa channel activity in astrocytes and cerebral arterial myocyte contractility. Here we report that cultured astrocytes express CYP 4A2/3 ω-hydroxylase mRNA and CYP 4A protein and produce 20-HETE and the CYP epoxygenase metabolites epoxyeicosatrienoic acids (EETs) when incubated with AA. The production of 20-HETE and EETs was enhanced following stimulation of metabotropic glutamate receptors (mGluR) on the astrocytes. Exogenous application of 20-HETE attenuated, whereas inhibition of 20-HETE production with HET-0016 increased the open state probabilities (NPo) of 71pS and 161pS KCa single-channel currents recorded from astrocytes. Exposure of isolated cerebral arterial myocytes to conditioned media from cultured astrocytes caused shortening of the length of freshly isolated cerebral arterial myocytes that was not evident following inhibition of astrocyte 20-HETE synthesis and action. These findings suggest that astrocytes not only release vasodilator EETs in response to mGluR stimulation but also synthetize and release the cerebral arterial myocyte constrictor 20-HETE that also functions as an endogenous inhibitor of the activity of two types of KCa channel currents found in astrocytes.


Assuntos
Astrócitos/metabolismo , Sistema Enzimático do Citocromo P-450/biossíntese , Ácidos Hidroxieicosatetraenoicos/biossíntese , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Ácido Araquidônico/administração & dosagem , Ácido Araquidônico/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/enzimologia , Encéfalo/metabolismo , Circulação Cerebrovascular/genética , Sistema Enzimático do Citocromo P-450/genética , Regulação Enzimológica da Expressão Gênica , Ácidos Hidroxieicosatetraenoicos/metabolismo , Músculo Liso Vascular/metabolismo , Ratos , Receptores de Glutamato Metabotrópico/genética
12.
Am J Physiol Cell Physiol ; 307(11): C989-98, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25055826

RESUMO

Mammals have circadian variation in blood pressure, heart rate, vascular tone, thrombotic tendency, and cerebral blood flow (CBF). These changes may be in part orchestrated by circadian variation in clock gene expression within cells comprising the vasculature that modulate blood flow (e.g., fibroblasts, cerebral vascular smooth muscle cells, astrocytes, and endothelial cells). However, the downstream mechanisms that underlie circadian changes in blood flow are unknown. Cytochrome P450 epoxygenases (Cyp4x1 and Cyp2c11) are expressed in the brain and vasculature and metabolize arachidonic acid (AA) to form epoxyeicosatrienoic acids (EETs). EETs are released from astrocytes, neurons, and vascular endothelial cells and act as potent vasodilators, increasing blood flow. EETs released in response to increases in neural activity evoke a corresponding increase in blood flow known as the functional hyperemic response. We examine the hypothesis that Cyp2c11 and Cyp4x1 expression and EETs production vary in a circadian manner in the rat brain and cerebral vasculature. RT-PCR revealed circadian/diurnal expression of clock and clock-controlled genes as well as Cyp4x1 and Cyp2c11, within the rat hippocampus, middle cerebral artery, inferior vena cava, hippocampal astrocytes and rat brain microvascular endothelial cells. Astrocyte and endothelial cell culture experiments revealed rhythmic variation in Cyp4x1 and Cyp2c11 gene and protein expression with a 12-h period and parallel rhythmic production of EETs. Our data suggest there is circadian regulation of Cyp4x1 and Cyp2c11 gene expression. Such rhythmic EETs production may contribute to circadian changes in blood flow and alter risk of adverse cardiovascular events throughout the day.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Encéfalo/enzimologia , Ritmo Circadiano/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Células Endoteliais/enzimologia , Esteroide 16-alfa-Hidroxilase/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Astrócitos/citologia , Astrócitos/enzimologia , Encéfalo/irrigação sanguínea , Células Cultivadas , Sequência Conservada , Sistema Enzimático do Citocromo P-450/genética , Família 2 do Citocromo P450 , Regulação Enzimológica da Expressão Gênica/fisiologia , Masculino , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Esteroide 16-alfa-Hidroxilase/genética
13.
Am J Physiol Heart Circ Physiol ; 306(7): H989-H1000, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24464756

RESUMO

Recent studies have indicated that the myogenic response (MR) in cerebral arteries is impaired in Fawn Hooded Hypertensive (FHH) rats and that transfer of a 2.4 megabase pair region of chromosome 1 (RNO1) containing 15 genes from the Brown Norway rat into the FHH genetic background restores MR in a FHH.1(BN) congenic strain. However, the mechanisms involved remain to be determined. The present study examined the role of the large conductance calcium-activated potassium (BK) channel in impairing the MR in FHH rats. Whole-cell patch-clamp studies of cerebral vascular smooth muscle cells (VSMCs) revealed that iberiotoxin (IBTX; BK inhibitor)-sensitive outward potassium (K+) channel current densities are four- to fivefold greater in FHH than in FHH.1(BN) congenic strain. Inside-out patches indicated that the BK channel open probability (NPo) is 10-fold higher and IBTX reduced NPo to a greater extent in VSMCs isolated from FHH than in FHH.1(BN) rats. Voltage sensitivity of the BK channel is enhanced in FHH as compared with FHH.1(BN) rats. The frequency and amplitude of spontaneous transient outward currents are significantly greater in VSMCs isolated from FHH than in FHH.1(BN) rats. However, the expression of the BK-α and -ß-subunit proteins in cerebral vessels as determined by Western blot is similar between the two groups. Middle cerebral arteries (MCAs) isolated from FHH rats exhibited an impaired MR, and administration of IBTX restored this response. These results indicate that there is a gene on RNO1 that impairs MR in the MCAs of FHH rats by enhancing BK channel activity.


Assuntos
Circulação Cerebrovascular , Hipertensão/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Músculo Liso Vascular/metabolismo , Vasoconstrição , Animais , Animais Congênicos , Sinalização do Cálcio , Modelos Animais de Doenças , Hipertensão/genética , Hipertensão/fisiopatologia , Ativação do Canal Iônico , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Masculino , Potenciais da Membrana , Artéria Cerebral Média/metabolismo , Artéria Cerebral Média/fisiopatologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Endogâmicos BN
14.
Am J Physiol Heart Circ Physiol ; 306(4): H475-84, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24285116

RESUMO

Amyloid-ß (Aß) has long been implicated as a causative protein in Alzheimer's disease. Cellular Aß accumulation is toxic and causes mitochondrial dysfunction, which precedes clinical symptoms of Alzheimer's disease pathology. In the present study, we explored the possible use of epoxyeicosatrienoic acids (EETs), epoxide metabolites of arachidonic acid, as therapeutic target against Aß-induced mitochondrial impairment using cultured neonatal hippocampal astrocytes. Inhibition of endogenous EET production by a selective epoxygenase inhibitor, MS-PPOH, caused a greater reduction in mitochondrial membrane potential in the presence of Aß (1, 10 µM) exposure versus absence of Aß. MS-PPOH preincubation also aggravated Aß-induced mitochondrial fragmentation. Preincubation of the cells with either 14,15- or 11,12-EET prevented this mitochondrial depolarization and fragmentation. EET pretreatment also further improved the reduction observed in mitochondrial oxygen consumption in the presence of Aß. Preincubation of the cells with EETs significantly improved cellular respiration under basal condition and in the presence of the protonophore, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP). The uncoupling of ATP synthase from the electron transfer chain that occurred in Aß-treated cells was also prevented by preincubation with EETs. Lastly, cellular reactive oxygen species production, a hallmark of Aß toxicity, also showed significant reduction in the presence of EETs. We have previously shown that Aß reduces EET synthesis in rat brain homogenates and cultured hippocampal astrocytes and neurons (Sarkar P, Narayanan J, Harder DR. Differential effect of amyloid beta on the cytochrome P450 epoxygenase activity in rat brain. Neuroscience 194: 241-249, 2011). We conclude that reduction of endogenous EETs may be one of the mechanisms through which Aß inflicts toxicity and thus supplementing the cells with exogenous EETs improves mitochondrial dynamics and prevents metabolic impairment.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Astrócitos/efeitos dos fármacos , Eicosanoides/farmacologia , Hipocampo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Amidas/farmacologia , Animais , Astrócitos/metabolismo , Eicosanoides/antagonistas & inibidores , Hipocampo/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
15.
Am J Physiol Heart Circ Physiol ; 304(2): H311-7, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23144316

RESUMO

This study examined the effects of transfer of a 2.4-Mbp region of rat chromosome 1 (RNO1) from Brown Norway (BN) into fawn-hooded hypertensive (FHH) rats on autoregulation (AR) of cerebral blood flow (CBF) and the myogenic response of middle cerebral arteries (MCAs). AR of CBF was poor in FHH and FHH.1(BN) AR(-) congenic strains that excluded the critical 2.4-Mbp region. In contrast, AR was restored in FHH.1(BN) AR(+) congenic strains that included this region. The diameter of MCAs of FHH rats increased from 140 ± 14 to 157 ± 18 µm when transmural pressure was increased from 40 to 140 mmHg, but it decreased from 137 ± 5 to 94 ± 7 µm in FHH.1(BN) AR(+) congenic strains. Transient occlusion of MCAs reduced CBF by 80% in all strains. However, the hyperemic response following ischemia was significantly greater in FHH and AR(-) rats than that seen in AR(+) congenic strains (AR(-), 173 ± 11% vs. AR(+), 124 ± 5%). Infarct size and edema formation were also significantly greater in an AR(-) strain (38.6 ± 2.6 and 12.1 ± 2%) than in AR(+) congenic strains (27.6 ± 1.8 and 6.5 ± 0.9%). These results indicate that there is a gene in the 2.4-Mbp region of RNO1 that alters the development of myogenic tone in cerebral arteries. Transfer of this region from BN to FHH rats restores AR of CBF and vascular reactivity and reduces cerebral injury after transient occlusion and reperfusion of the MCA.


Assuntos
Pressão Sanguínea/genética , Circulação Cerebrovascular/genética , Cromossomos de Mamíferos , Hipertensão/genética , Músculo Liso Vascular/fisiopatologia , Animais , Animais Congênicos , Edema Encefálico/genética , Edema Encefálico/fisiopatologia , Edema Encefálico/prevenção & controle , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Predisposição Genética para Doença , Homeostase , Hipertensão/fisiopatologia , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/prevenção & controle , Masculino , Artéria Cerebral Média/fisiopatologia , Fenótipo , Ratos , Ratos Endogâmicos BN , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/fisiopatologia , Traumatismo por Reperfusão/prevenção & controle
16.
J Neurochem ; 121(1): 168-79, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22251169

RESUMO

20-Hydroxyeicosatetraenoic acid (20-HETE) is a cytochrome P450 metabolite of arachidonic acid that that contributes to infarct size following focal cerebral ischemia. However, little is known about the role of 20-HETE in global cerebral ischemia or neonatal hypoxia-ischemia (H-I). The present study examined the effects of blockade of the synthesis of 20-HETE with N-hydroxy-N'-(4-n-butyl-2-methylphenyl) formamidine (HET0016) in neonatal piglets after H-I to determine if it protects highly vulnerable striatal neurons. Administration of HET0016 after H-I improved early neurological recovery and protected neurons in putamen after 4 days of recovery. HET0016 had no significant effect on cerebral blood flow. cytochrome P450 4A immunoreactivity was detected in putamen neurons, and direct infusion of 20-HETE in the putamen increased phosphorylation of Na(+), K(+) -ATPase and NMDA receptor NR1 subunit selectively at protein kinase C-sensitive sites but not at protein kinase A-sensitive sites. HET0016 selectively inhibited the H-I induced phosphorylation at these same sites at 3 h of recovery and improved Na(+), K(+) -ATPase activity. At 3 h, HET0016 also suppressed H-I induced extracellular signal-regulated kinase 1/2 activation and protein markers of nitrosative and oxidative stress. Thus, 20-HETE can exert direct effects on key proteins involved in neuronal excitotoxicity in vivo and contributes to neurodegeneration after global cerebral ischemia in immature brain.


Assuntos
Amidinas/administração & dosagem , Isquemia Encefálica/metabolismo , Isquemia Encefálica/prevenção & controle , Ácidos Hidroxieicosatetraenoicos/antagonistas & inibidores , Ácidos Hidroxieicosatetraenoicos/biossíntese , Animais , Animais Recém-Nascidos , Ácidos Hidroxieicosatetraenoicos/administração & dosagem , Infusões Intraventriculares , Masculino , Suínos
17.
Am J Physiol Heart Circ Physiol ; 302(5): H1075-85, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22198176

RESUMO

The increase in cerebral blood flow (CBF) during neuronal activation can be only partially attenuated by individual inhibitors of epoxyeicosatrienoic acids (EETs), cyclooxgenase-2, group I metabotropic glutamate receptors (mGluR), neuronal nitric oxide synthase (nNOS), N-methyl-D-aspartate receptors, or adenosine receptors. Some studies that used a high concentration (500 µM) of the cyclooxygenase-1 inhibitor SC-560 have implicated cyclooxygenase-1 in gliovascular coupling in certain model systems in the mouse. Here, we found that increasing the concentration of SC-560 from 25 µM to 500 µM over whisker barrel cortex in anesthetized rats attenuated the CBF response to whisker stimulation. However, exogenous prostaglandin E(2) restored the response in the presence of 500 µM SC-560 but not in the presence of a cyclooxygenase-2 inhibitor, thereby suggesting a limited permissive role for cyclooxygenase-1. Furthermore, inhibition of the CBF response to whisker stimulation by an EET antagonist persisted in the presence of SC-560 or a cyclooxygenase-2 inhibitor, thereby indicating that the EET-dependent component of vasodilation did not require cyclooxygenase-1 or -2 activity. With combined inhibition of cyclooxygenase-1 and -2, mGluR, nNOS, EETs, N-methyl-D-aspartate receptors, and adenosine 2B receptors, the CBF response was reduced by 60%. We postulated that the inability to completely block the CBF response was due to tissue acidosis resulting from impaired clearance of metabolically produced CO2. We tested this idea by increasing the concentration of superfused bicarbonate from 25 to 60 mM and found a markedly reduced CBF response to hypercapnia. However, increasing bicarbonate had no effect on the initial or steady-state CBF response to whisker stimulation with or without combined inhibition. We conclude that the residual response after inhibition of several known vasodilatory mechanisms is not due to acidosis arising from impaired CO2 clearance when the CBF response is reduced. An unidentified mechanism apparently is responsible for the rapid, residual cortical vasodilation during vibrissal stimulation.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Circulação Cerebrovascular/fisiologia , Ciclo-Oxigenase 1/fisiologia , Ciclo-Oxigenase 2/fisiologia , Córtex Somatossensorial/irrigação sanguínea , Córtex Somatossensorial/metabolismo , Vibrissas/fisiologia , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Ácido 8,11,14-Eicosatrienoico/metabolismo , Ácido 8,11,14-Eicosatrienoico/farmacologia , Acidose/metabolismo , Animais , Bicarbonatos/farmacologia , Circulação Cerebrovascular/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Dinoprostona/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pirazóis/farmacologia , Ratos , Ratos Wistar , Córtex Somatossensorial/efeitos dos fármacos
18.
Am J Physiol Heart Circ Physiol ; 302(6): H1285-93, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22245774

RESUMO

Recent studies have indicated that inhibitors of the synthesis of 20-hydroxyeicosatetraenoic acid (20-HETE) may have direct neuroprotective actions since they reduce infarct volume after ischemia reperfusion in the brain without altering blood flow. To explore this possibility, the present study used organotypic hippocampal slice cultures subjected to oxygen-glucose deprivation (OGD) and reoxygenation to examine whether 20-HETE is released by organotypic hippocampal slices after OGD and whether it contributes to neuronal death through the generation of ROS and activation of caspase-3. The production of 20-HETE increased twofold after OGD and reoxygenation. Blockade of the synthesis of 20-HETE with N-hydroxy-N'-(4-butyl-2-methylphenol)formamidine (HET0016) or its actions with a 20-HETE antagonist, 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid, reduced cell death, as measured by the release of lactate dehydrogenase and propidium iodide uptake. Administration of a 20-HETE mimetic, 20-hydroxyeicosa-5(Z),14(Z)-dienoic acid (5,14-20-HEDE), had the opposite effect and increased injury after OGD. The death of neurons after OGD was associated with an increase in the production of ROS and activation of caspase-3. These effects were attenuated by HET0016 and potentiated after the administration of 5,14-20-HEDE. These findings indicate that the production of 20-HETE by hippocampal slices is increased after OGD and that inhibitors of the synthesis or actions of 20-HETE protect neurons from ischemic cell death. The protective effect of 20-HETE inhibitors is associated with a decrease in superoxide production and activation of caspase-3.


Assuntos
Amidinas/farmacologia , Glucose/deficiência , Hipocampo/efeitos dos fármacos , Ácidos Hidroxieicosatetraenoicos/antagonistas & inibidores , Ácidos Hidroxieicosatetraenoicos/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Animais Recém-Nascidos , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Hipóxia Celular , Citoproteção , Hipocampo/metabolismo , Hipocampo/patologia , Ácidos Hidroxieicosatetraenoicos/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxidos/metabolismo , Fatores de Tempo , Técnicas de Cultura de Tecidos
19.
Trends Neurosci ; 32(3): 160-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19162338

RESUMO

Moment-to-moment changes in local neuronal activity lead to dynamic changes in cerebral blood flow. Emerging evidence implicates astrocytes as one of the key players in coordinating this neurovascular coupling. Astrocytes are poised to sense glutamatergic synaptic activity over a large spatial domain via activation of metabotropic glutamate receptors and subsequent calcium signaling and via energy-dependent glutamate transport. Astrocyte foot processes can signal vascular smooth muscle by arachidonic acid pathways involving astrocytic cytochrome P450 epoxygenase, astrocytic cyclooxygenase-1 and smooth muscle cytochrome P450 omega-hydroxylase activities, and by astrocytic and smooth muscle potassium channels. Non-glutamatergic transmitters released from neurons, such as nitric oxide, cyclooxygenase-2 metabolites and vasoactive intestinal peptide, might modulate neurovascular signaling at the level of the astrocyte or smooth muscle. Thus, astrocytes have a pivotal role in dynamic signaling within the neurovascular unit. Important questions remain on how this signaling is integrated with other pathways in health and disease.


Assuntos
Astrócitos/fisiologia , Circulação Cerebrovascular/fisiologia , Adenosina/metabolismo , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/fisiologia , Ácido Glutâmico/metabolismo , Humanos , Potássio/metabolismo , Fluxo Sanguíneo Regional , Transdução de Sinais/fisiologia
20.
J Clin Invest ; 118(9): 3025-37, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18688283

RESUMO

Atherosclerosis remains a major cause of death in the developed world despite the success of therapies that lower cholesterol and BP. The intermediate-conductance calcium-activated potassium channel KCa3.1 is expressed in multiple cell types implicated in atherogenesis, and pharmacological blockade of this channel inhibits VSMC and lymphocyte activation in rats and mice. We found that coronary vessels from patients with coronary artery disease expressed elevated levels of KCa3.1. In Apoe(-/-) mice, a genetic model of atherosclerosis, KCa3.1 expression was elevated in the VSMCs, macrophages, and T lymphocytes that infiltrated atherosclerotic lesions. Selective pharmacological blockade and gene silencing of KCa3.1 suppressed proliferation, migration, and oxidative stress of human VSMCs. Furthermore, VSMC proliferation and macrophage activation were reduced in KCa3.1(-/-) mice. In vivo therapy with 2 KCa3.1 blockers, TRAM-34 and clotrimazole, significantly reduced the development of atherosclerosis in aortas of Apoe(-/-) mice by suppressing VSMC proliferation and migration into plaques, decreasing infiltration of plaques by macrophages and T lymphocytes, and reducing oxidative stress. Therapeutic concentrations of TRAM-34 in mice caused no discernible toxicity after repeated dosing and did not compromise the immune response to influenza virus. These data suggest that KCa3.1 blockers represent a promising therapeutic strategy for atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Animais , Aorta/metabolismo , Aterosclerose/genética , Clotrimazol/farmacologia , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Estresse Oxidativo , Pirazóis/farmacologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA