Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cell Neurosci ; 78: 41-51, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27913309

RESUMO

The monoamine neurotransmitter dopamine (DA) acts across phylogeny to modulate both simple and complex behaviors. The presynaptic DA transporter (DAT) is a major determinant of DA signaling capacity in ensuring efficient extracellular DA clearance. In humans, DAT is also a major target for prescribed and abused psychostimulants. Multiple structural determinants of DAT function and regulation have been defined, though largely these findings have arisen from heterologous expression or ex vivo cell culture studies. Loss of function mutations in the gene encoding the Caenhorhabditis elegans DAT (dat-1) produces rapid immobility when animals are placed in water, a phenotype termed swimming-induced paralysis (Swip). The ability of a DA neuron-expressed, GFP-tagged DAT-1 fusion protein (GFP::DAT-1) to localize to synapses and rescue Swip in these animals provides a facile approach to define sequences supporting DAT somatic export and function in vivo. In prior studies, we found that truncation of the last 25 amino acids of the DAT-1 C-terminus (Δ25) precludes Swip rescue, supported by a deficit in GFP::DAT-1 synaptic localization. Here, we further defined the elements within Δ25 required for DAT-1 export and function in vivo. We identified two conserved motifs (584KW585 and 591PYRKR595) where mutation results in a failure of GFP::DAT-1 to be efficiently exported to synapses and restore DAT-1 function. The 584KW585 motif conforms to a sequence proposed to support SEC24 binding, ER export from the endoplasmic reticulum (ER), and surface expression of mammalian DAT proteins, whereas the 591PYRKR595 sequence conforms to a 3R motif identified as a SEC24 binding site in vertebrate G-protein coupled receptors. Consistent with a potential role of SEC24 orthologs in DAT-1 export, we demonstrated DA neuron-specific expression of a sec-24.2 transcriptional reporter. Mutations of the orthologous C-terminal sequences in human DAT (hDAT) significantly reduced transporter surface expression and DA uptake, despite normal hDAT protein expression. Although, hDAT mutants retained SEC24 interactions, as defined in co-immunoprecipitation studies. However, these mutations disrupted the ability of SEC24D to enhance hDAT surface expression. Our studies document an essential role of conserved DAT C-terminal sequences in transporter somatic export and synaptic localization in vivo, that add further support for important roles for SEC24 family members in efficient transporter trafficking.


Assuntos
Transporte Axonal , Proteínas de Caenorhabditis elegans/metabolismo , Sequência Conservada , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Sinais Direcionadores de Proteínas , Animais , Sítios de Ligação , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Evolução Molecular , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Ligação Proteica , Sinapses/metabolismo
2.
J Neurosci ; 35(25): 9409-23, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26109664

RESUMO

Glial cells play a critical role in shaping neuronal development, structure, and function. In a screen for Caenorhabditis elegans mutants that display dopamine (DA)-dependent, Swimming-Induced Paralysis (Swip), we identified a novel gene, swip-10, the expression of which in glia is required to support normal swimming behavior. swip-10 mutants display reduced locomotion rates on plates, consistent with our findings of elevated rates of presynaptic DA vesicle fusion using fluorescence recovery after photobleaching. In addition, swip-10 mutants exhibit elevated DA neuron excitability upon contact with food, as detected by in vivo Ca(2+) monitoring, that can be rescued by glial expression of swip-10. Mammalian glia exert powerful control of neuronal excitability via transporter-dependent buffering of extracellular glutamate (Glu). Consistent with this idea, swip-10 paralysis was blunted in mutants deficient in either vesicular Glu release or Glu receptor expression and could be phenocopied by mutations that disrupt the function of plasma membrane Glu transporters, most noticeably glt-1, the ortholog of mammalian astrocytic GLT1 (EAAT2). swip-10 encodes a protein containing a highly conserved metallo-ß-lactamase domain, within which our swip-10 mutations are located and where engineered mutations disrupt Swip rescue. Sequence alignments identify the CNS-expressed gene MBLAC1 as a putative mammalian ortholog. Together, our studies provide evidence of a novel pathway in glial cells regulated by swip-10 that limits DA neuron excitability, DA secretion, and DA-dependent behaviors through modulation of Glu signaling.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Transdução de Sinais/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Ácido Glutâmico/metabolismo , Microscopia Confocal , Atividade Motora/fisiologia , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Curr Biol ; 18(3): 159-67, 2008 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-18249112

RESUMO

BACKGROUND: In mammals and humans, noradrenaline is a key modulator of aggression. Octopamine, a closely related biogenic amine, has been proposed to have a similar function in arthropods. However, the effect of octopamine on aggressive behavior is little understood. RESULTS: An automated video analysis of aggression in male Drosophila has been developed, rendering aggression accessible to high-throughput studies. The software detects the lunge, a conspicuous behavioral act unique to aggression. In lunging, the aggressor rears up on his hind legs and snaps down on his opponent. By using the software to eliminate confounding effects, we now show that aggression is almost abolished in mutant males lacking octopamine. This suppression is independent of whether tyramine, the precursor of octopamine, is increased or also depleted. Restoring octopamine synthesis in the brain either throughout life or in adulthood leads to a partial rescue of aggression. Finally, neuronal silencing of octopaminergic and tyraminergic neurons almost completely abolishes lunges. CONCLUSIONS: Octopamine modulates Drosophila aggression. Genetically depleting the animal of octopamine downregulates lunge frequency without a sizable effect on the lunge motor program. This study provides access to the neuronal circuitry mediating this modulation.


Assuntos
Agressão/fisiologia , Drosophila melanogaster/metabolismo , Octopamina/metabolismo , Animais , Tamanho Corporal/fisiologia , Drosophila melanogaster/genética , Inativação Gênica , Masculino , Mutação , Neurônios/metabolismo , Octopamina/biossíntese , Tiramina/metabolismo , Caminhada/fisiologia
4.
J Neurosci ; 27(51): 14216-27, 2007 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-18094261

RESUMO

The catecholamine dopamine (DA) functions as a powerful modulatory neurotransmitter in both invertebrates and vertebrates. As in man, DA neurons in the nematode Caenorhabditis elegans express a cocaine-sensitive transporter (DAT-1), presumably to regulate synaptic DA signaling and limit DA spillover to extrasynaptic sites, although evidence supporting this is currently lacking. In this report, we describe and validate a novel and readily quantifiable phenotype, swimming-induced paralysis (SWIP) that emerges in DAT-1-deficient nematodes when animals exert maximal physical activity in water. We verify the dependence of SWIP on DA biosynthesis, vesicular packaging, synaptic release, and on the DA receptor DOP-3. Using DAT-1 specific antibodies and GFP::DAT-1 fusions, we demonstrate a synaptic enrichment of DAT-1 that is achieved independently of synaptic targeting of the vesicular monoamine transporter (VMAT). Importantly, dat-1 deletions and point mutations that disrupt DA uptake in cultured C. elegans neurons and/or impact DAT-1 synaptic localization in vivo generate SWIP. SWIP assays, along with in vivo imaging of wild-type and mutant GFP::DAT-1 fusions identify a distal COOH terminal segment of the transporter as essential for efficient somatic export, synaptic localization and in vivo DA clearance. Our studies provide the first description of behavioral perturbations arising from altered trafficking of DATs in vivo in any organism and support a model whereby endogenous DA actions in C. elegans are tightly regulated by synaptic DAT-1.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Atividade Motora/fisiologia , Sinapses/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/análise , Linhagem Celular , Proteínas da Membrana Plasmática de Transporte de Dopamina/análise , Proteínas da Membrana Plasmática de Transporte de Dopamina/fisiologia , Humanos , Masculino , Taxa de Depuração Metabólica/fisiologia , Sinapses/química
5.
J Neurosci Methods ; 153(2): 243-9, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16337274

RESUMO

Biogenic amines are critically important neuromodulators in both vertebrates and invertebrates. Quantification of these amines can be difficult, particularly in neural extracts of Drosophila melanogaster that contain interfering electroactive compounds. We have developed a method for the reliable separation and quantification of the biogenic amines dopamine, serotonin, tyramine, and octopamine in Drosophila brain extracts using high performance liquid chromatography with electrochemical detection. Our method obviates the need for complex preparatory procedures or instrumentation, and can reproducibly detect picogram quantities of these amines. By optimizing the composition of the mobile phase and the electrode potential, and by examining common complications in the analysis of biological samples, we have developed a reliable technique for monitoring levels of biogenic amines in the Drosophila brain.


Assuntos
Aminas Biogênicas/análise , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Drosophila/química , Animais , Química Encefálica , Desenho de Equipamento
6.
J Neurosci Methods ; 232: 58-62, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-24792527

RESUMO

BACKGROUND: The nematode Caenhorhabditis elegans offers great power for the identification and characterization of genes that regulate behavior. In support of this effort, analytical methods are required that provide dimensional analyses of subcomponents of behavior. Previously, we demonstrated that loss of the presynaptic dopamine (DA) transporter, dat-1, evokes DA-dependent Swimming-Induced Paralysis (Swip) (Mcdonald et al., 2007), a behavior compatible with forward genetic screens (Hardaway et al., 2012). NEW METHOD: Here, we detail the development and implementation of SwimR, a set of tools that provide for an automated, kinetic analysis of C. elegans Swip. SwimR relies on open source programs that can be freely implemented and modified. RESULTS: We show that SwimR can display time-dependent alterations of swimming behavior induced by drug-treatment, illustrating this capacity with the dat-1 blocker and tricyclic antidepressant imipramine (IMI). We demonstrate the capacity of SwimR to extract multiple kinetic parameters that are impractical to obtain in manual assays. COMPARISON WITH EXISTING METHODS: Standard measurements of C. elegans swimming utilizes manual assessments of the number of animals exhibiting swimming versus paralysis. Our approach deconstructs the time course and rates of movement in an automated fashion, offering a significant increase in the information that can be obtained from swimming behavior. CONCLUSIONS: The SwimR platform is a powerful tool for the deconstruction of worm thrashing behavior in the context of both genetic and pharmacological manipulations that can be used to segregate pathways that underlie nematode swimming mechanics.


Assuntos
Paralisia/diagnóstico , Paralisia/etiologia , Natação , Análise de Variância , Animais , Animais Geneticamente Modificados , Antidepressivos Tricíclicos/farmacologia , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Relação Dose-Resposta a Droga , Processamento Eletrônico de Dados , Imipramina/farmacologia , Oxigenases de Função Mista/genética , Mutação/genética , Paralisia/induzido quimicamente , Paralisia/genética , Receptores de Dopamina D2/genética
7.
G3 (Bethesda) ; 2(8): 961-75, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22908044

RESUMO

Disrupted dopamine (DA) signaling is believed to contribute to the core features of multiple neuropsychiatric and neurodegenerative disorders. Essential features of DA neurotransmission are conserved in the nematode Caenorhabditis elegans, providing us with an opportunity to implement forward genetic approaches that may reveal novel, in vivo regulators of DA signaling. Previously, we identified a robust phenotype, termed Swimming-induced paralysis (Swip), that emerges in animals deficient in the plasma membrane DA transporter. Here, we report the use and quantitative analysis of Swip in the identification of mutant genes that control DA signaling. Two lines captured in our screen (vt21 and vt22) bear novel dat-1 alleles that disrupt expression and surface trafficking of transporter proteins in vitro and in vivo. Two additional lines, vt25 and vt29, lack transporter mutations but exhibit genetic, biochemical, and behavioral phenotypes consistent with distinct perturbations of DA signaling. Our studies validate the utility of the Swip screen, demonstrate the functional relevance of DA transporter structural elements, and reveal novel genomic loci that encode regulators of DA signaling.


Assuntos
Caenorhabditis elegans/genética , Dopamina/metabolismo , Transdução de Sinais/genética , Inibidores da Captação Adrenérgica/farmacologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Atividade Motora/efeitos dos fármacos , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Reserpina/farmacologia , Natação
8.
Dev Neurobiol ; 67(10): 1396-405, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17638385

RESUMO

The trace biogenic amines tyramine and octopamine are found in the nervous systems of animals ranging in complexity from nematodes to mammals. In insects such as Drosophila melanogaster, the trace amine octopamine is a well-established neuromodulator that mediates a diverse range of physiological processes, but an independent role for tyramine is less clear. Tyramine is synthesized from tyrosine by the enzyme tyrosine decarboxylase (TDC). We previously reported the identification of two Tdc genes in Drosophila: the peripherally-expressed Tdc1 and the neurally-expressed Tdc2. To further clarify the neural functions of the trace amines in Drosophila, we examined normal and cocaine-induced locomotor activity in flies that lack both neural tyramine and octopamine because of mutation in Tdc2 (Tdc2(RO54)). Tdc2(RO54) flies have dramatically reduced basal locomotor activity levels and are hypersensitive to an initial dose of cocaine. Tdc2-targeted expression of the constitutively active inward rectifying potassium channel Kir2.1 replicates these phenotypes, and Tdc2-driven expression of Tdc1 rescues the phenotypes. However, flies that contain no measurable neural octopamine and an excess of tyramine due to a null mutation in the tyramine beta-hydroxylase gene (TbetaH(nM18)) exhibit normal locomotor activity and cocaine responses in spite of showing female sterility due to loss of octopamine. The ability of elevated levels of neural tyramine in TbetaH(nM18) flies to supplant the role of octopamine in adult locomotor and cocaine-induced behaviors, but not in functions related to female fertility, indicates mechanistic differences in the roles of trace amines in these processes.


Assuntos
Aminas/metabolismo , Cocaína/farmacologia , Drosophila melanogaster/metabolismo , Resistência a Medicamentos/genética , Atividade Motora/efeitos dos fármacos , Sistema Nervoso/metabolismo , Animais , Inibidores da Captação de Dopamina/farmacologia , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Feminino , Fertilidade/fisiologia , Atividade Motora/fisiologia , Mutação/genética , Sistema Nervoso/efeitos dos fármacos , Octopamina/biossíntese , Fenótipo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Tiramina/biossíntese , Tirosina Descarboxilase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA