Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Hum Brain Mapp ; 45(8): e26717, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38798116

RESUMO

Twin studies have found gross cerebellar volume to be highly heritable. However, whether fine-grained regional volumes within the cerebellum are similarly heritable is still being determined. Anatomical MRI scans from two independent datasets (QTIM: Queensland Twin IMaging, N = 798, mean age 22.1 years; QTAB: Queensland Twin Adolescent Brain, N = 396, mean age 11.3 years) were combined with an optimised and automated cerebellum parcellation algorithm to segment and measure 28 cerebellar regions. We show that the heritability of regional volumetric measures varies widely across the cerebellum ( h 2 $$ {h}^2 $$ 47%-91%). Additionally, the good to excellent test-retest reliability for a subsample of QTIM participants suggests that non-genetic variance in cerebellar volumes is due primarily to unique environmental influences rather than measurement error. We also show a consistent pattern of strong associations between the volumes of homologous left and right hemisphere regions. Associations were predominantly driven by genetic effects shared between lobules, with only sparse contributions from environmental effects. These findings are consistent with similar studies of the cerebrum and provide a first approximation of the upper bound of heritability detectable by genome-wide association studies.


Assuntos
Cerebelo , Imageamento por Ressonância Magnética , Humanos , Cerebelo/diagnóstico por imagem , Cerebelo/anatomia & histologia , Masculino , Adolescente , Feminino , Adulto Jovem , Criança , Adulto , Tamanho do Órgão , Gêmeos Monozigóticos
2.
J Neurol Neurosurg Psychiatry ; 95(7): 682-690, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38383154

RESUMO

BACKGROUND: Spinal cord damage is a feature of many spinocerebellar ataxias (SCAs), but well-powered in vivo studies are lacking and links with disease severity and progression remain unclear. Here we characterise cervical spinal cord morphometric abnormalities in SCA1, SCA2, SCA3 and SCA6 using a large multisite MRI dataset. METHODS: Upper spinal cord (vertebrae C1-C4) cross-sectional area (CSA) and eccentricity (flattening) were assessed using MRI data from nine sites within the ENIGMA-Ataxia consortium, including 364 people with ataxic SCA, 56 individuals with preataxic SCA and 394 nonataxic controls. Correlations and subgroup analyses within the SCA cohorts were undertaken based on disease duration and ataxia severity. RESULTS: Individuals in the ataxic stage of SCA1, SCA2 and SCA3, relative to non-ataxic controls, had significantly reduced CSA and increased eccentricity at all examined levels. CSA showed large effect sizes (d>2.0) and correlated with ataxia severity (r<-0.43) and disease duration (r<-0.21). Eccentricity correlated only with ataxia severity in SCA2 (r=0.28). No significant spinal cord differences were evident in SCA6. In preataxic individuals, CSA was significantly reduced in SCA2 (d=1.6) and SCA3 (d=1.7), and the SCA2 group also showed increased eccentricity (d=1.1) relative to nonataxic controls. Subgroup analyses confirmed that CSA and eccentricity are abnormal in early disease stages in SCA1, SCA2 and SCA3. CSA declined with disease progression in all, whereas eccentricity progressed only in SCA2. CONCLUSIONS: Spinal cord abnormalities are an early and progressive feature of SCA1, SCA2 and SCA3, but not SCA6, which can be captured using quantitative MRI.


Assuntos
Imageamento por Ressonância Magnética , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/genética , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Genótipo , Idoso , Medula Espinal/patologia , Medula Espinal/diagnóstico por imagem , Medula Cervical/diagnóstico por imagem , Medula Cervical/patologia , Índice de Gravidade de Doença , Estudos de Casos e Controles
3.
Mov Disord ; 39(2): 370-379, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37927246

RESUMO

BACKGROUND: The neurological phenotype of Friedreich ataxia (FRDA) is characterized by neurodegeneration and neuroinflammation in the cerebellum and brainstem. Novel neuroimaging approaches quantifying brain free-water using diffusion magnetic resonance imaging (dMRI) are potentially more sensitive to these processes than standard imaging markers. OBJECTIVES: To quantify the extent of free-water and microstructural change in FRDA-relevant brain regions using neurite orientation dispersion and density imaging (NODDI), and bitensor diffusion tensor imaging (btDTI). METHOD: Multi-shell dMRI was acquired from 14 individuals with FRDA and 14 controls. Free-water measures from NODDI (FISO) and btDTI (FW) were compared between groups in the cerebellar cortex, dentate nuclei, cerebellar peduncles, and brainstem. The relative sensitivity of the free-water measures to group differences was compared to microstructural measures of NODDI intracellular volume, free-water corrected fractional anisotropy, and conventional uncorrected fractional anisotropy. RESULTS: In individuals with FRDA, FW was elevated in the cerebellar cortex, peduncles (excluding middle), dentate, and brainstem (P < 0.005). FISO was elevated primarily in the cerebellar lobules (P < 0.001). On average, FW effect sizes were larger than all other markers (mean ηρ 2 = 0.43), although microstructural measures also had very large effects in the superior and inferior cerebellar peduncles and brainstem (ηρ 2 > 0.37). Across all regions and metrics, effect sizes were largest in the superior cerebellar peduncles (ηρ 2 > 0.46). CONCLUSIONS: Multi-compartment diffusion measures of free-water and neurite integrity distinguish FRDA from controls with large effects. Free-water magnitude in the brainstem and cerebellum provided the greatest distinction between groups. This study supports further applications of multi-compartment diffusion modeling, and investigations of free-water as a measure of disease expression and progression in FRDA. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia de Friedreich , Transtornos dos Movimentos , Substância Branca , Humanos , Ataxia de Friedreich/diagnóstico por imagem , Ataxia de Friedreich/patologia , Imagem de Tensor de Difusão/métodos , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Transtornos dos Movimentos/patologia , Substância Branca/diagnóstico por imagem , Água , Imageamento por Ressonância Magnética
4.
Mov Disord ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644761

RESUMO

BACKGROUND: The dentate nuclei of the cerebellum are key sites of neuropathology in Friedreich ataxia (FRDA). Reduced dentate nucleus volume and increased mean magnetic susceptibility, a proxy of iron concentration, have been reported by magnetic resonance imaging studies in people with FRDA. Here, we investigate whether these changes are regionally heterogeneous. METHODS: Quantitative susceptibility mapping data were acquired from 49 people with FRDA and 46 healthy controls. The dentate nuclei were manually segmented and analyzed using three dimensional vertex-based shape modeling and voxel-based assessments to identify regional changes in morphometry and susceptibility, respectively. RESULTS: Individuals with FRDA, relative to healthy controls, showed significant bilateral surface contraction most strongly at the rostral and caudal boundaries of the dentate nuclei. The magnitude of this surface contraction correlated with disease duration, and to a lesser extent, ataxia severity. Significantly greater susceptibility was also evident in the FRDA cohort relative to controls, but was instead localized to bilateral dorsomedial areas, and also correlated with disease duration and ataxia severity. CONCLUSIONS: Changes in the structure of the dentate nuclei in FRDA are not spatially uniform. Atrophy is greatest in areas with high gray matter density, whereas increases in susceptibility-reflecting iron concentration, demyelination, and/or gliosis-predominate in the medial white matter. These findings converge with established histological reports and indicate that regional measures of dentate nucleus substructure are more sensitive measures of disease expression than full-structure averages. Biomarker development and therapeutic strategies that directly target the dentate nuclei, such as gene therapies, may be optimized by targeting these areas of maximal pathology. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

5.
Cerebellum ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642239

RESUMO

Cerebellar pathology engenders the disturbance of movement that characterizes Friedreich ataxia (FRDA), yet the impact of cerebellar pathology on cognition in FRDA remains unclear. Numerous studies have unequivocally demonstrated the role of the cerebellar pathology in disturbed cognitive, language and affective regulation, referred to as Cerebellar Cognitive Affective Syndrome (CCAS), and quantified by the CCAS-Scale (CCAS-S). The presence of dysarthria in many individuals with ataxia, particularly FRDA, may confound results on some items of the CCAS-S resulting in false-positive scores. This study explored the relationship between performance on the CCAS-S and clinical metrics of disease severity in 57 adults with FRDA. In addition, this study explored the relationship between measures of intelligibility and naturalness of speech and scores on the CCAS-S in a subgroup of 39 individuals with FRDA. We demonstrated a significant relationship between clinical metrics and performance on the CCAS-S. In addition, we confirmed the items that returned the greatest rate of failure were based on Verbal Fluency Tasks, revealing a significant relationship between these items and measures of speech. Measures of speech explained over half of the variance in the CCAS-S score suggesting the role of dysarthria in the performance on the CCAS-S is not clear. Further work is required prior to adopting the CCAS-S as a cognitive screening tool for individuals with FRDA.

6.
Pharmacol Rev ; 73(3): 924-967, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34088867

RESUMO

The endothelium, a cellular monolayer lining the blood vessel wall, plays a critical role in maintaining multiorgan health and homeostasis. Endothelial functions in health include dynamic maintenance of vascular tone, angiogenesis, hemostasis, and the provision of an antioxidant, anti-inflammatory, and antithrombotic interface. Dysfunction of the vascular endothelium presents with impaired endothelium-dependent vasodilation, heightened oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, and endothelial cell senescence. Recent studies have implicated altered endothelial cell metabolism and endothelial-to-mesenchymal transition as new features of endothelial dysfunction. Endothelial dysfunction is regarded as a hallmark of many diverse human panvascular diseases, including atherosclerosis, hypertension, and diabetes. Endothelial dysfunction has also been implicated in severe coronavirus disease 2019. Many clinically used pharmacotherapies, ranging from traditional lipid-lowering drugs, antihypertensive drugs, and antidiabetic drugs to proprotein convertase subtilisin/kexin type 9 inhibitors and interleukin 1ß monoclonal antibodies, counter endothelial dysfunction as part of their clinical benefits. The regulation of endothelial dysfunction by noncoding RNAs has provided novel insights into these newly described regulators of endothelial dysfunction, thus yielding potential new therapeutic approaches. Altogether, a better understanding of the versatile (dys)functions of endothelial cells will not only deepen our comprehension of human diseases but also accelerate effective therapeutic drug discovery. In this review, we provide a timely overview of the multiple layers of endothelial function, describe the consequences and mechanisms of endothelial dysfunction, and identify pathways to effective targeted therapies. SIGNIFICANCE STATEMENT: The endothelium was initially considered to be a semipermeable biomechanical barrier and gatekeeper of vascular health. In recent decades, a deepened understanding of the biological functions of the endothelium has led to its recognition as a ubiquitous tissue regulating vascular tone, cell behavior, innate immunity, cell-cell interactions, and cell metabolism in the vessel wall. Endothelial dysfunction is the hallmark of cardiovascular, metabolic, and emerging infectious diseases. Pharmacotherapies targeting endothelial dysfunction have potential for treatment of cardiovascular and many other diseases.


Assuntos
Aterosclerose , Tratamento Farmacológico da COVID-19 , COVID-19 , Fármacos Cardiovasculares , Doenças Cardiovasculares , Endotélio Vascular , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , COVID-19/metabolismo , COVID-19/fisiopatologia , Fármacos Cardiovasculares/classificação , Fármacos Cardiovasculares/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Descoberta de Drogas , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Humanos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , SARS-CoV-2
7.
Clin Endocrinol (Oxf) ; 98(5): 692-699, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36807922

RESUMO

OBJECTIVE: The role of circulating sex hormones on structural brain ageing is yet to be established. This study explored whether concentrations of circulating sex hormones in older women are associated with the baseline and longitudinal changes in structural brain ageing, defined by the brain-predicted age difference (brain-PAD). DESIGN: Prospective cohort study using data from NEURO and Sex Hormones in Older Women; substudies of the ASPirin in Reducing Events in the Elderly clinical trial. PATIENTS: Community-dwelling older women (aged 70+ years). MEASUREMENTS: Oestrone, testosterone, dehydroepiandrosterone (DHEA), and sex-hormone binding globulin (SHBG) were quantified from plasma samples collected at baseline. T1-weighted magnetic resonance imaging was performed at baseline, 1 and 3 years. Brain age was derived from whole brain volume using a validated algorithm. RESULTS: The sample comprised of 207 women not taking medications known to influence sex hormone concentrations. A statistically higher baseline brain-PAD (older brain age relative to chronological age) was seen for women in the highest DHEA tertile compared with the lowest in the unadjusted analysis (p = .04). This was not significant when adjusted for chronological age, and potential confounding health and behavioural factors. Oestrone, testosterone and SHBG were not associated with brain-PAD cross-sectionally, nor were any of the examined sex hormones or SHBG associated with brain-PAD longitudinally. CONCLUSION: No strong evidence of an association between circulating sex hormones and brain-PAD. Given there is prior evidence to suggests sex hormones may be important for brain ageing, further studies of circulating sex hormones and brain health in postmenopausal women are warranted.


Assuntos
Estradiol , Estrona , Idoso , Humanos , Feminino , Estudos Prospectivos , Pós-Menopausa , Hormônios Esteroides Gonadais , Testosterona , Encéfalo/metabolismo , Desidroepiandrosterona , Globulina de Ligação a Hormônio Sexual/metabolismo
8.
Mov Disord ; 38(1): 45-56, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308733

RESUMO

BACKGROUND: Spinal cord damage is a hallmark of Friedreich's ataxia (FRDA), but its progression and clinical correlates remain unclear. OBJECTIVE: The objective of this study was to perform a characterization of cervical spinal cord structural damage in a large multisite FRDA cohort. METHODS: We performed a cross-sectional analysis of cervical spinal cord (C1-C4) cross-sectional area (CSA) and eccentricity using magnetic resonance imaging data from eight sites within the ENIGMA-Ataxia initiative, including 256 individuals with FRDA and 223 age- and sex-matched control subjects. Correlations and subgroup analyses within the FRDA cohort were undertaken based on disease duration, ataxia severity, and onset age. RESULTS: Individuals with FRDA, relative to control subjects, had significantly reduced CSA at all examined levels, with large effect sizes (d > 2.1) and significant correlations with disease severity (r < -0.4). Similarly, we found significantly increased eccentricity (d > 1.2), but without significant clinical correlations. Subgroup analyses showed that CSA and eccentricity are abnormal at all disease stages. However, although CSA appears to decrease progressively, eccentricity remains stable over time. CONCLUSIONS: Previous research has shown that increased eccentricity reflects dorsal column (DC) damage, while decreased CSA reflects either DC or corticospinal tract (CST) damage, or both. Hence our data support the hypothesis that damage to the DC and damage to CST follow distinct courses in FRDA: developmental abnormalities likely define the DC, while CST alterations may be both developmental and degenerative. These results provide new insights about FRDA pathogenesis and indicate that CSA of the cervical spinal cord should be investigated further as a potential biomarker of disease progression. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia de Friedreich , Transtornos dos Movimentos , Humanos , Ataxia de Friedreich/complicações , Ataxia de Friedreich/patologia , Ataxia , Imageamento por Ressonância Magnética/métodos , Tratos Piramidais
9.
Cerebellum ; 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280482

RESUMO

With many viable strategies in the therapeutic pipeline, upcoming clinical trials in hereditary and sporadic degenerative ataxias will benefit from non-invasive MRI biomarkers for patient stratification and the evaluation of therapies. The MRI Biomarkers Working Group of the Ataxia Global Initiative therefore devised guidelines to facilitate harmonized MRI data acquisition in clinical research and trials in ataxias. Recommendations are provided for a basic structural MRI protocol that can be used for clinical care and for an advanced multi-modal MRI protocol relevant for research and trial settings. The advanced protocol consists of modalities with demonstrated utility for tracking brain changes in degenerative ataxias and includes structural MRI, magnetic resonance spectroscopy, diffusion MRI, quantitative susceptibility mapping, and resting-state functional MRI. Acceptable ranges of acquisition parameters are provided to accommodate diverse scanner hardware in research and clinical contexts while maintaining a minimum standard of data quality. Important technical considerations in setting up an advanced multi-modal protocol are outlined, including the order of pulse sequences, and example software packages commonly used for data analysis are provided. Outcome measures most relevant for ataxias are highlighted with use cases from recent ataxia literature. Finally, to facilitate access to the recommendations by the ataxia clinical and research community, examples of datasets collected with the recommended parameters are provided and platform-specific protocols are shared via the Open Science Framework.

10.
Proc Natl Acad Sci U S A ; 117(1): 668-676, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31848247

RESUMO

The glymphatic system functions in the removal of potentially harmful metabolites and proteins from the brain. Dynamic, contrast-enhanced MRI was used in fully awake rats to follow the redistribution of intraventricular contrast agent entrained to the light-dark cycle and its hypothetical relationship to the sleep-waking cycle, blood flow, and brain temperature in specific brain areas. Brain areas involved in circadian timing and sleep-wake rhythms showed the lowest redistribution of contrast agent during the light phase or time of inactivity and sleep in rats. Global brain redistribution of contrast agent was heterogeneous. The redistribution was highest along the dorsal cerebrum and lowest in the midbrain/pons and along the ventral surface of the brain. This heterogeneous redistribution of contrast agent paralleled the gradients and regional variations in brain temperatures reported in the literature for awake animals. Three-dimensional quantitative ultrashort time-to-echo contrast-enhanced imaging was used to reconstruct small, medium, and large arteries and veins in the rat brain and revealed areas of lowest redistribution overlapped with this macrovasculature. This study raises new questions and theoretical considerations of the impact of the light-dark cycle, brain temperature, and blood flow on the function of the glymphatic system.


Assuntos
Ritmo Circadiano/fisiologia , Sistema Glinfático/diagnóstico por imagem , Fotoperíodo , Vigília/fisiologia , Animais , Temperatura Corporal/fisiologia , Circulação Cerebrovascular/fisiologia , Meios de Contraste/administração & dosagem , Sistema Glinfático/fisiologia , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Modelos Animais , Ratos , Sono/fisiologia
11.
Neuroimage ; 254: 119168, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367651

RESUMO

There have been many studies demonstrating children born very preterm exhibit brain white matter microstructural alterations, which have been related to neurodevelopmental difficulties. These prior studies have often been based on diffusion MRI modelling and analysis techniques, which commonly focussed on white matter microstructural properties in children born very preterm. However, there have been relatively fewer studies investigating the free-water content of the white matter, and also the microstructure and free-water content of the cortical grey matter, in children born very preterm. These biophysical properties of the brain change rapidly during fetal and neonatal brain development, and therefore such properties are likely also adversely affected by very preterm birth. In this study, we investigated the relationship of very preterm birth (<30 weeks' gestation) to both white matter and cortical grey matter microstructure and free-water content in childhood using advanced diffusion MRI analyses. A total of 130 very preterm participants and 45 full-term control participants underwent diffusion MRI at age 13 years. Diffusion tissue signal fractions derived by Single-Shell 3-Tissue Constrained Spherical Deconvolution were used to investigate brain tissue microstructural and free-water composition. The tissue microstructural and free-water composition metrics were analysed using a voxel-based analysis and cortical region-of-interest analysis approach. Very preterm 13-year-olds exhibited reduced white matter microstructural density and increased free-water content across widespread regions of the white matter compared with controls. Additionally, very preterm 13-year-olds exhibited reduced microstructural density and increased free-water content in specific temporal, frontal, occipital and cingulate cortical regions. These brain tissue composition alterations were strongly associated with cerebral white matter abnormalities identified in the neonatal period, and concurrent adverse cognitive and motor outcomes in very preterm children. The findings demonstrate brain microstructural and free-water alterations up to thirteen years from neonatal brain abnormalities in very preterm children that relate to adverse neurodevelopmental outcomes.


Assuntos
Leucoaraiose , Nascimento Prematuro , Substância Branca , Adolescente , Encéfalo/diagnóstico por imagem , Criança , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Recém-Nascido , Gravidez , Água , Substância Branca/diagnóstico por imagem
12.
Int J Obes (Lond) ; 46(1): 194-201, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34611286

RESUMO

BACKGROUND/OBJECTIVES: Obesity is associated with unhealthy food choices. Food selection is driven by the subjective valuation of available options, and the perceived and actual rewards accompanying consumption. These cognitive operations are mediated by brain regions including the ventromedial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), and ventral striatum (vStr). This study investigated the relationship between body mass index (BMI) and functional activations in the vmPFC, dACC, and vStr during food selection and consumption. SUBJECTS/METHODS: After overnight fasting, 26 individuals (BMI: 18-40 kg/m2) performed a food choice task while being scanned with functional magnetic resonance imaging (fMRI). Each trial involved selecting one beverage from a pair of presented options, followed by delivery of a 3 mL aliquot of the selected option using an MR-compatible gustometer. We also tracked subjective preference for each beverage throughout the experiment. RESULTS: During food choice, individuals with greater BMI had less activation in the dorsolateral prefrontal cortex when selecting a high-value option and less vmPFC activation upon its consumption. Independent of BMI, during food choice the dACC and anterior insula elicited higher activation when a less preferred beverage was selected. Activation of the dACC and a broader frontoparietal network was also observed when deciding between options more similar in value. During consumption, receipt of a more preferred beverage was associated with greater vmPFC response, and attenuation of the dACC. CONCLUSIONS: An individual's preference for a food option modulates the brain activity associated with choosing and consuming it. The relationship between food preference and underlying brain activity is altered in obesity, with reduced engagement of cognition-related regions when presented with a highly valued option, but a blunted response in reward-related regions upon consumption.


Assuntos
Comportamento de Escolha/fisiologia , Comportamento Alimentar/fisiologia , Rede Nervosa/fisiopatologia , Obesidade/complicações , Adulto , Índice de Massa Corporal , Mapeamento Encefálico/métodos , Comportamento Alimentar/psicologia , Feminino , Preferências Alimentares/fisiologia , Preferências Alimentares/psicologia , Humanos , Modelos Logísticos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Masculino , Rede Nervosa/metabolismo , Obesidade/fisiopatologia
13.
Ann Neurol ; 90(4): 570-583, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34435700

RESUMO

OBJECTIVE: Friedreich ataxia (FRDA) is an inherited neurological disease defined by progressive movement incoordination. We undertook a comprehensive characterization of the spatial profile and progressive evolution of structural brain abnormalities in people with FRDA. METHODS: A coordinated international analysis of regional brain volume using magnetic resonance imaging data charted the whole-brain profile, interindividual variability, and temporal staging of structural brain differences in 248 individuals with FRDA and 262 healthy controls. RESULTS: The brainstem, dentate nucleus region, and superior and inferior cerebellar peduncles showed the greatest reductions in volume relative to controls (Cohen d = 1.5-2.6). Cerebellar gray matter alterations were most pronounced in lobules I-VI (d = 0.8), whereas cerebral differences occurred most prominently in precentral gyri (d = 0.6) and corticospinal tracts (d = 1.4). Earlier onset age predicted less volume in the motor cerebellum (rmax  = 0.35) and peduncles (rmax  = 0.36). Disease duration and severity correlated with volume deficits in the dentate nucleus region, brainstem, and superior/inferior cerebellar peduncles (rmax  = -0.49); subgrouping showed these to be robust and early features of FRDA, and strong candidates for further biomarker validation. Cerebral white matter abnormalities, particularly in corticospinal pathways, emerge as intermediate disease features. Cerebellar and cerebral gray matter loss, principally targeting motor and sensory systems, preferentially manifests later in the disease course. INTERPRETATION: FRDA is defined by an evolving spatial profile of neuroanatomical changes beyond primary pathology in the cerebellum and spinal cord, in line with its progressive clinical course. The design, interpretation, and generalization of research studies and clinical trials must consider neuroanatomical staging and associated interindividual variability in brain measures. ANN NEUROL 2021;90:570-583.


Assuntos
Encéfalo/patologia , Ataxia de Friedreich/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Adulto , Idade de Início , Encéfalo/anatomia & histologia , Progressão da Doença , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Tratos Piramidais/patologia , Adulto Jovem
14.
Mov Disord ; 37(1): 218-224, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34643298

RESUMO

BACKGROUND: Neuroinflammation is proposed to accompany, or even contribute to, neuropathology in Friedreich ataxia (FRDA), with implications for disease treatment and tracking. OBJECTIVES: To examine brain glial activation and systemic immune dysfunction in people with FRDA and quantify their relationship with symptom severity, duration, and onset age. METHODS: Fifteen individuals with FRDA and 13 healthy controls underwent brain positron emission tomography using the translocator protein (TSPO) radioligand [18 F]-FEMPA, a marker of glial activation, together with the quantification of blood plasma inflammatory cytokines. RESULTS: [18 F]-FEMPA binding was significantly increased in the dentate nuclei (d = 0.67), superior cerebellar peduncles (d = 0.74), and midbrain (d = 0.87), alongside increased plasma interleukin-6 (IL-6) (d = 0.73), in individuals with FRDA compared to controls. Increased [18 F]-FEMPA binding in the dentate nuclei, brainstem, and cerebellar anterior lobe correlated with earlier age of symptom onset (controlling for the genetic triplet repeat expansion length; all r part < -0.6), and in the pons and anterior lobe with shorter disease duration (r = -0.66; -0.73). CONCLUSIONS: Neuroinflammation is evident in brain regions implicated in FRDA neuropathology. Increased neuroimmune activity may be related to earlier disease onset and attenuate over the course of the illness. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Ataxia de Friedreich , Tronco Encefálico/metabolismo , Cerebelo/patologia , Ataxia de Friedreich/diagnóstico por imagem , Ataxia de Friedreich/patologia , Humanos , Imageamento por Ressonância Magnética , Doenças Neuroinflamatórias , Tomografia por Emissão de Pósitrons , Receptores de GABA/metabolismo
15.
Eur Spine J ; 31(11): 2844-2850, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36125614

RESUMO

PURPOSE: Lockdown measures to combat the COVID-19 pandemic restricted social interactions and travel. This retrospective, observational study was conducted to evaluate the effect of lockdown restrictions on Oswestry Disability Index (ODI) scores in patients with spinal conditions. METHODS: Prospectively collected data from the British Spine Registry were retrospectively analysed in two groups. The study group included patients' baseline pre-operative ODI scores collected during the first national lockdown in the UK between March and May 2020. The reference group included ODI scores recorded during the same period in 2019, before the pandemic. Scores were compared between groups using the Mann-Whitney U test. We also calculated modified scores that omitted responses to questions related to travel and social life. These were compared using Wilcoxon matched-pairs signed-rank test and Bland-Altman analyses. RESULTS: The median ODI scores for the reference and lockdown groups were 49 and 45, respectively, with no significant differences in the mean ranks (p = 0.068). Comparisons of original and modified ODI scores showed different outcomes for each study group. No significant differences were observed in the lockdown group (p = 0.06). However, for the pre-COVID-19 reference group, there was a significant difference (p < 0.01). Bland-Altman analyses showed reasonable agreement between the methods for calculating ODI in both groups. CONCLUSION: We found no clinically important differences in ODI scores between the two groups. The findings suggest that the ODI is reliable during lockdown situations and can be used with confidence in the future research using both retrospective and prospective data. LEVEL OF EVIDENCE: Level 3.


Assuntos
COVID-19 , Avaliação da Deficiência , Humanos , Estudos Transversais , Estudos Retrospectivos , COVID-19/prevenção & controle , Medição da Dor , Estudos Prospectivos , Pandemias , Resultado do Tratamento , Controle de Doenças Transmissíveis , Vértebras Lombares/cirurgia
16.
J Neurosci Res ; 99(11): 2948-2963, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34516012

RESUMO

Spatial memory impairments are observed in people with Huntington's disease (HD), however, the domain of spatial memory has received little focus when characterizing the cognitive phenotype of HD. Spatial memory is traditionally thought to be a hippocampal-dependent function, while the neuropathology of HD centers on the striatum. Alongside spatial memory deficits in HD, recent neurocognitive theories suggest that a larger brain network is involved, including the striatum. We examined the relationship between hippocampal and striatal volumes and spatial memory in 36 HD gene expansion carriers, including premanifest (n = 24) and early manifest HD (n = 12), and 32 matched healthy controls. We assessed spatial memory with Paired Associates Learning, Rey-Osterrieth Complex Figure Test, and the Virtual House task, which assesses three components of spatial memory: navigation, object location, and plan drawing. Caudate nucleus, putamen, and hippocampal volumes were manually segmented on T1-weighted MR images. As expected, caudate nucleus and putamen volumes were significantly smaller in the HD group compared to controls, with manifest HD having more severe atrophy than the premanifest HD group. Hippocampal volumes did not differ significantly between HD and control groups. Nonetheless, on average, the HD group performed significantly worse than controls across all spatial memory tasks. The spatial memory components of object location and recall of figural and topographical drawings were associated with striatal and hippocampal volumes in the HD cohort. We provide a case to include spatial memory impairments in the cognitive phenotype of HD, and extend the neurocognitive picture of HD beyond its primary pathology within the striatum.


Assuntos
Doença de Huntington , Memória Espacial , Encéfalo/patologia , Hipocampo/patologia , Humanos , Doença de Huntington/complicações , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/genética , Imageamento por Ressonância Magnética , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Testes Neuropsicológicos
17.
Int J Obes (Lond) ; 45(11): 2447-2454, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34341471

RESUMO

BACKGROUND/OBJECTIVES: Obesity has been ascribed to corticostriatal regions taking control over homeostatic areas. To test this assumption, we applied an effective connectivity approach to reveal the direction of information flow between brain regions and the valence of connections (excitatory versus inhibitory) as a function of increased BMI and homeostatic state. SUBJECTS/METHODS: Forty-one participants (21 overweight/obese) underwent two resting-state fMRI scans: after overnight fasting (hunger) and following a standardised meal (satiety). We used spectral dynamic causal modelling to unravel hunger and increased BMI-related changes in directed connectivity between cortical, insular, striatal and hypothalamic regions. RESULTS: During hunger, as compared to satiety, we found increased excitation of the ventromedial prefrontal cortex over the ventral striatum and hypothalamus, suggesting enhanced top-down modulation compensating energy depletion. Increased BMI was associated with increased excitation of the anterior insula over the hypothalamus across the hunger and satiety conditions. The interaction of hunger and increased BMI yielded decreased intra-cortical excitation from the dorso-lateral to the ventromedial prefrontal cortex. CONCLUSIONS: Our findings suggest that excess weight and obesity is associated with persistent top-down excitation of the hypothalamus, regardless of homeostatic state, and hunger-related reductions of dorso-lateral to ventromedial prefrontal inputs. These findings are compatible with eating without hunger and reduced self-regulation views of obesity.


Assuntos
Índice de Massa Corporal , Hipotálamo/fisiopatologia , Rede Nervosa/anormalidades , Córtex Pré-Frontal/fisiopatologia , Adulto , Feminino , Humanos , Hipotálamo/anormalidades , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Masculino , Rede Nervosa/fisiopatologia , Córtex Pré-Frontal/anormalidades
18.
FASEB J ; 34(5): 6166-6184, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32167209

RESUMO

Cancer metastasis and secondary tumor initiation largely depend on circulating tumor cell (CTC) and vascular endothelial cell (EC) interactions by incompletely understood mechanisms. Endothelial glycocalyx (GCX) dysfunction may play a significant role in this process. GCX structure depends on vascular flow patterns, which are irregular in tumor environments. This work presents evidence that disturbed flow (DF) induces GCX degradation, leading to CTC homing to the endothelium, a first step in secondary tumor formation. A 2-fold greater attachment of CTCs to human ECs was found to occur under DF conditions, compared to uniform flow (UF) conditions. These results corresponded to an approximately 50% decrease in wheat germ agglutinin (WGA)-labeled components of the GCX under DF conditions, vs UF conditions, with undifferentiated levels of CTC-recruiting E-selectin under DF vs UF conditions. Confirming the role of the GCX, neuraminidase induced the degradation of WGA-labeled GCX under UF cell culture conditions or in Balb/C mice and led to an over 2-fold increase in CTC attachment to ECs or Balb/C mouse lungs, respectively, compared to untreated conditions. These experiments confirm that flow-induced GCX degradation can enable metastatic CTC arrest. This work, therefore, provides new insight into pathways of secondary tumor formation.


Assuntos
Neoplasias da Mama/patologia , Endotélio Vascular/patologia , Glicocálix/metabolismo , Hemodinâmica , Neoplasias Pulmonares/secundário , Células Neoplásicas Circulantes/patologia , Neuraminidase/metabolismo , Animais , Neoplasias da Mama/metabolismo , Células Cultivadas , Selectina E/metabolismo , Endotélio Vascular/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Células Neoplásicas Circulantes/metabolismo
19.
BMC Neurol ; 21(1): 312, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384369

RESUMO

BACKGROUND: Brain age is a biomarker that predicts chronological age using neuroimaging features. Deviations of this predicted age from chronological age is considered a sign of age-related brain changes, or commonly referred to as brain ageing. The aim of this systematic review is to identify and synthesize the evidence for an association between lifestyle, health factors and diseases in adult populations, with brain ageing. METHODS: This systematic review was undertaken in accordance with the PRISMA guidelines. A systematic search of Embase and Medline was conducted to identify relevant articles using search terms relating to the prediction of age from neuroimaging data or brain ageing. The tables of two recent review papers on brain ageing were also examined to identify additional articles. Studies were limited to adult humans (aged 18 years and above), from clinical or general populations. Exposures and study design of all types were also considered eligible. RESULTS: A systematic search identified 52 studies, which examined brain ageing in clinical and community dwelling adults (mean age between 21 to 78 years, ~ 37% were female). Most research came from studies of individuals diagnosed with schizophrenia or Alzheimer's disease, or healthy populations that were assessed cognitively. From these studies, psychiatric and neurologic diseases were most commonly associated with accelerated brain ageing, though not all studies drew the same conclusions. Evidence for all other exposures is nascent, and relatively inconsistent. Heterogenous methodologies, or methods of outcome ascertainment, were partly accountable. CONCLUSION: This systematic review summarised the current evidence for an association between genetic, lifestyle, health, or diseases and brain ageing. Overall there is good evidence to suggest schizophrenia and Alzheimer's disease are associated with accelerated brain ageing. Evidence for all other exposures was mixed or limited. This was mostly due to a lack of independent replication, and inconsistency across studies that were primarily cross sectional in nature. Future research efforts should focus on replicating current findings, using prospective datasets. TRIAL REGISTRATION: A copy of the review protocol can be accessed through PROSPERO, registration number CRD42020142817 .


Assuntos
Encéfalo , Neuroimagem , Adulto , Idoso , Envelhecimento , Encéfalo/diagnóstico por imagem , Estudos Transversais , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
20.
Curr Opin Neurol ; 33(4): 451-461, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32657886

RESUMO

PURPOSE OF REVIEW: Degenerative ataxias are rare and currently untreatable movement disorders, primarily characterized by neurodegeneration in the cerebellum and brainstem. We highlight MRI studies with the most potential for utility in pending ataxia trials and underscore advances in disease characterization and diagnostics in the field. RECENT FINDINGS: With availability of advanced MRI acquisition methods and specialized software dedicated to the analysis of MRI of the cerebellum, patterns of cerebellar atrophy in different degenerative ataxias are increasingly well defined. The field further embraced rigorous multimodal investigations to study network-level microstructural and functional brain changes and their neurochemical correlates. MRI and magnetic resonance spectroscopy were shown to be more sensitive to disease progression than clinical scales and to detect abnormalities in premanifest mutation carriers. SUMMARY: Magnetic resonance techniques are increasingly well placed for characterizing the expression and progression of degenerative ataxias. The most impactful work has arguably come through multi-institutional studies that monitor relatively large cohorts, multimodal investigations that assess the sensitivity of different measures and their interrelationships, and novel imaging approaches that are targeted to known pathophysiology (e.g., iron and spinal imaging in Friedreich ataxia). These multimodal, multi-institutional studies are paving the way to clinical trial readiness and enhanced understanding of disease in degenerative ataxias.


Assuntos
Ataxia/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Degeneração Neural/diagnóstico por imagem , Ataxia/patologia , Encéfalo/patologia , Cerebelo/patologia , Progressão da Doença , Humanos , Atrofia de Múltiplos Sistemas/patologia , Degeneração Neural/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA