Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 218(Pt 6): 907-14, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25788727

RESUMO

Orangutans produce alarm calls called kiss-squeaks, which they sometimes modify by putting a hand in front of their mouth. Through theoretical models and observational evidence, we show that using the hand when making a kiss-squeak alters the acoustics of the production in such a way that more formants per kilohertz are produced. Our theoretical models suggest that cylindrical wave propagation is created with the use of the hand and face as they act as a cylindrical extension of the lips. The use of cylindrical wave propagation in animal calls appears to be extremely rare, but is an effective way to lengthen the acoustic system; it causes the number of resonances per kilohertz to increase. This increase is associated with larger animals, and thus using the hand in kiss-squeak production may be effective in exaggerating the size of the producer. Using the hand appears to be a culturally learned behavior, and therefore orangutans may be able to associate the acoustic effect of using the hand with potentially more effective deterrence of predators.


Assuntos
Pongo pygmaeus/fisiologia , Vocalização Animal , Acústica , Animais , Mãos , Indonésia , Modelos Biológicos , Espectrografia do Som
2.
Elife ; 122024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252123

RESUMO

Recursive procedures that allow placing a vocal signal inside another of a similar kind provide a neuro-computational blueprint for syntax and phonology in spoken language and human song. There are, however, no known vocal sequences among nonhuman primates arranged in self-embedded patterns that evince vocal recursion or potential incipient or evolutionary transitional forms thereof, suggesting a neuro-cognitive transformation exclusive to humans. Here, we uncover that wild flanged male orangutan long calls feature rhythmically isochronous call sequences nested within isochronous call sequences, consistent with two hierarchical strata. Remarkably, three temporally and acoustically distinct call rhythms in the lower stratum were not related to the overarching rhythm at the higher stratum by any low multiples, which suggests that these recursive structures were neither the result of parallel non-hierarchical procedures nor anatomical artifacts of bodily constraints or resonances. Findings represent a case of temporally recursive hominid vocal combinatorics in the absence of syntax, semantics, phonology, or music. Second-order combinatorics, 'sequences within sequences', involving hierarchically organized and cyclically structured vocal sounds in ancient hominids may have preluded the evolution of recursion in modern language-able humans.


Language is the most powerful communication tool known in nature. By combining a finite set of elements, it allows us to encode infinite messages. This enables communication about virtually anything, from alerting others to potential dangers, to recommending a favourite book. The prevailing theory of the last 70 years suggests that this ability rests on a computational process in the brain that is unique to humans, known as recursion. Recursion enables humans to produce and place a language element or pattern of elements inside another element or pattern of the same kind. In this way, a clause can be embedded inside another 'carrier' clause to extend a thought, argument, or scenario, for example, "the dog, which chased the cat, was barking". While recursion offers a simple, yet potent, explanation for the endless possibilities of language, how and why recursion ­ and by extension language ­ emerged in humans but no other animals remains a mystery. Lameira et al. observed vocal patterns in wild orangutans that appeared to be composed of different elements. As orangutans and other great apes are our closest living relatives, they represent the most realistic model for studying the ability of human ancestors to use and comprehend language. Therefore, Lameira et al. set out to determine if this was a case of vocal patterning embedded within a similar vocal pattern, which could indicate that recursion underpins production of these calls. Analysing recordings of long calls made by wild male orangutans showed that they are organized as two layers, where calls with a regular beat (or tempo) are produced within another "carrier" call of a different tempo. Up to three different call types, each with their own signature tempo, can occur within the same carrier call. Further analysis confirmed these call types were unrelated to the carrier. The findings of Lameira et al. demonstrate that orangutans produce recursive vocal sequences that could represent a possible precursor to recursion in humans, offering a potential avenue for studying how recursion, and ultimately language, evolved in humans. In the future, better understanding of how language evolved may help to refine machine learning algorithms that aim to recognize, predict or generate text.


Assuntos
Música , Pongo , Humanos , Animais , Masculino , Cognição , Dinitrato de Isossorbida , Linguística
3.
J Acoust Soc Am ; 134(3): 2326-35, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23967963

RESUMO

One of the most apparent discontinuities between non-human primate (primate) call communication and human speech concerns repertoire size. The former is essentially fixed to a limited number of innate calls, while the latter essentially consists of numerous learned components. Consequently, primates are thought to lack laryngeal control required to produce learned voiced calls. However, whether they may produce learned voiceless calls awaits investigation. Here, a case of voiceless call learning in primates is investigated--orangutan (Pongo spp.) whistling. In this study, all known whistling orangutans are inventoried, whistling-matching tests (previously conducted with one individual) are replicated with another individual using original test paradigms, and articulatory and acoustic whistle characteristics are compared between three orangutans. Results show that whistling has been reported for ten captive orangutans. The test orangutan correctly matched human whistles with significantly high levels of performance. Whistle variation between individuals indicated voluntary control over the upper lip, lower lip, and respiratory musculature, allowing individuals to produce learned voiceless calls. Results are consistent with inter- and intra-specific social transmission in whistling orangutans. Voiceless call learning in orangutans implies that some important components of human speech learning and control were in place before the homininae-ponginae evolutionary split.


Assuntos
Comportamento Imitativo , Aprendizagem , Pongo/fisiologia , Canto , Vocalização Animal , Acústica , Animais , Evolução Biológica , Fenômenos Biomecânicos , Feminino , Humanos , Lábio/anatomia & histologia , Lábio/fisiologia , Masculino , Pongo/anatomia & histologia , Pongo/psicologia , Músculos Respiratórios/anatomia & histologia , Músculos Respiratórios/fisiologia , Espectrografia do Som , Especificidade da Espécie
4.
PNAS Nexus ; 2(6): pgad182, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383019

RESUMO

Speech is among the most complex motoric tasks humans ever perform. Songbirds match this achievement during song production through the precise and simultaneous motor control of two sound sources in the syrinx. Integrated and intricate motor control has made songbirds comparative models par excellence for the evolution of speech, however, phylogenetic distance with humans prevents an improved understanding of the precursors that, within the human lineage, drove the emergence of advanced vocal motor control and speech. Here, we report two types of biphonic call combination in wild orangutans that articulatorily resemble human beatboxing and that result from the simultaneous exercise of two vocal sound sources: one unvoiced source achieved through articulatory maneuvering of the lips, tongue, and jaw as typically used for consonant-like call production, plus one voiced source achieved through laryngeal action and voice activation as typically used for vowel-like call production. Orangutan biphonic call combinations showcase unappreciated levels of, and distinct neuromotor channels for, vocal motor control in a wild great ape, providing a direct vocal motor analogy with birdsong based on the precise and simultaneous co-control of two sound sources. Findings suggest that speech and human vocal fluency likely built upon complex call combination, coordination and coarticulation capacities that involved vowel-like and consonant-like calls in an ancestral hominid.

5.
Nat Ecol Evol ; 6(5): 644-652, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35314786

RESUMO

In humans, individuals' social setting determines which and how language is acquired. Social seclusion experiments show that sociality also guides vocal development in songbirds and marmoset monkeys, but absence of similar great ape data has been interpreted as support to saltational notions for language origin, even if such laboratorial protocols are unethical with great apes. Here we characterize the repertoire entropy of orangutan individuals and show that in the wild, different degrees of sociality across populations are associated with different 'vocal personalities' in the form of distinct regimes of alarm call variants. In high-density populations, individuals are vocally more original and acoustically unpredictable but new call variants are short lived, whereas individuals in low-density populations are more conformative and acoustically consistent but also exhibit more complex call repertoires. Findings provide non-invasive evidence that sociality predicts vocal phenotype in a wild great ape. They prove false hypotheses that discredit great apes as having hardwired vocal development programmes and non-plastic vocal behaviour. Social settings mould vocal output in hominids besides humans.


Assuntos
Hominidae , Vocalização Animal , Animais , Fenótipo , Pongo , Comportamento Social
6.
Proc Biol Sci ; 276(1673): 3689-94, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19656794

RESUMO

Culture has long been assumed to be uniquely human but recent studies, in particular on great apes, have suggested that cultures also occur in non-human primates. The most apparent cultural behaviours in great apes involve tools in the subsistence context where they are clearly functional to obtain valued food. On the other hand, tool-use to modify acoustic communication has been reported only once and its function has not been investigated. Thus, the question whether this is an adaptive behaviour remains open, even though evidence indicates that it is socially transmitted (i.e. cultural). Here we report on wild orang-utans using tools to modulate the maximum frequency of one of their sounds, the kiss squeak, emitted in distress. In this variant, orang-utans strip leaves off a twig and hold them to their mouth while producing a kiss squeak. Using leaves as a tool lowers the frequency of the call compared to a kiss squeak without leaves or with only a hand to the mouth. If the lowering of the maximum frequency functions in orang-utans as it does in other animals, two predictions follow: (i) kiss squeak frequency is related to body size and (ii) the use of leaves will occur in situations of most acute danger. Supporting these predictions, kiss squeaks without tools decreased with body size and kiss squeaks with leaves were only emitted by highly distressed individuals. Moreover, we found indications that the calls were under volitional control. This finding is significant for at least two reasons. First, although few animal species are known to deceptively lower the maximum frequency of their calls to exaggerate their perceived size to the listener (e.g. vocal tract elongation in male deer) it has never been reported that animals may use tools to achieve this, or that they are primates. Second, it shows that the orang-utan culture extends into the communicative domain, thus challenging the traditional assumption that primate calling behaviour is overall purely emotional.


Assuntos
Pongo pygmaeus/fisiologia , Comportamento de Utilização de Ferramentas/fisiologia , Vocalização Animal/fisiologia , Animais
7.
Primates ; 50(1): 56-64, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19052691

RESUMO

The capacity of nonhuman primates to actively modify the acoustic structure of existing sounds or vocalizations in their repertoire appears limited. Several studies have reported population or community differences in the acoustical structure of nonhuman primate long distance calls and have suggested vocal learning as a mechanism for explaining such variation. In addition, recent studies on great apes have indicated that there are repertoire differences between populations. Some populations have sounds in their repertoire that others have not. These differences have also been suggested to be the result of vocal learning. On yet another level great apes can, after extensive human training, also learn some species atypical vocalizations. Here we show a new aspect of great ape vocal learning by providing data that an orangutan has spontaneously (without any training) acquired a human whistle and can modulate the duration and number of whistles to copy a human model. This might indicate that the learning capacities of great apes in the auditory domain might be more flexible than hitherto assumed.


Assuntos
Animais de Zoológico , Comportamento Imitativo/fisiologia , Aprendizagem/fisiologia , Pongo pygmaeus/fisiologia , Vocalização Animal , Animais , Análise Discriminante , Feminino , Humanos , Espectrografia do Som
8.
Sci Rep ; 6: 30315, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27461756

RESUMO

Vocal fold control was critical to the evolution of spoken language, much as it today allows us to learn vowel systems. It has, however, never been demonstrated directly in a non-human primate, leading to the suggestion that it evolved in the human lineage after divergence from great apes. Here, we provide the first evidence for real-time, dynamic and interactive vocal fold control in a great ape during an imitation "do-as-I-do" game with a human demonstrator. Notably, the orang-utan subject skilfully produced "wookies" - an idiosyncratic vocalization exhibiting a unique spectral profile among the orang-utan vocal repertoire. The subject instantaneously matched human-produced wookies as they were randomly modulated in pitch, adjusting his voice frequency up or down when the human demonstrator did so, readily generating distinct low vs. high frequency sub-variants. These sub-variants were significantly different from spontaneous ones (not produced in matching trials). Results indicate a latent capacity for vocal fold exercise in a great ape (i) in real-time, (ii) up and down the frequency spectrum, (iii) across a register range beyond the species-repertoire and, (iv) in a co-operative turn-taking social setup. Such ancestral capacity likely provided the neuro-behavioural basis of the more fine-tuned vocal fold control that is a human hallmark.


Assuntos
Pongo/fisiologia , Prega Vocal/fisiologia , Vocalização Animal , Animais , Evolução Biológica , Pongo/genética
9.
PLoS One ; 10(1): e116136, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25569211

RESUMO

The evolutionary origins of speech remain obscure. Recently, it was proposed that speech derived from monkey facial signals which exhibit a speech-like rhythm of ∼5 open-close lip cycles per second. In monkeys, these signals may also be vocalized, offering a plausible evolutionary stepping stone towards speech. Three essential predictions remain, however, to be tested to assess this hypothesis' validity; (i) Great apes, our closest relatives, should likewise produce 5Hz-rhythm signals, (ii) speech-like rhythm should involve calls articulatorily similar to consonants and vowels given that speech rhythm is the direct product of stringing together these two basic elements, and (iii) speech-like rhythm should be experience-based. Via cinematic analyses we demonstrate that an ex-entertainment orangutan produces two calls at a speech-like rhythm, coined "clicks" and "faux-speech." Like voiceless consonants, clicks required no vocal fold action, but did involve independent manoeuvring over lips and tongue. In parallel to vowels, faux-speech showed harmonic and formant modulations, implying vocal fold and supralaryngeal action. This rhythm was several times faster than orangutan chewing rates, as observed in monkeys and humans. Critically, this rhythm was seven-fold faster, and contextually distinct, than any other known rhythmic calls described to date in the largest database of the orangutan repertoire ever assembled. The first two predictions advanced by this study are validated and, based on parsimony and exclusion of potential alternative explanations, initial support is given to the third prediction. Irrespectively of the putative origins of these calls and underlying mechanisms, our findings demonstrate irrevocably that great apes are not respiratorily, articulatorilly, or neurologically constrained for the production of consonant- and vowel-like calls at speech rhythm. Orangutan clicks and faux-speech confirm the importance of rhythmic speech antecedents within the primate lineage, and highlight potential articulatory homologies between great ape calls and human consonants and vowels.


Assuntos
Lábio/fisiologia , Pongo pygmaeus/fisiologia , Língua/fisiologia , Prega Vocal/fisiologia , Vocalização Animal/fisiologia , Comunicação Animal , Animais , Evolução Biológica , Humanos , Gravação em Vídeo
10.
Primates ; 56(1): 21-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25238793

RESUMO

Hundreds of rehabilitant great apes have been released into the wild, and thousands await release. However, survival rates after release can be as low as 20%. Several factors influence individuals' survival rates, one of which is the capacity to obtain an adequate diet once released. Released individuals are faced with a mixture of familiar and novel foods in an unfamiliar forest; therefore, it is important to understand how they increase acceptance and consumption of novel foods. This is especially vital for omnivorous species, such as wild great apes, which consume several hundred species of different foods. We assessed the effects of repeated exposures and sociality (i.e. co-feeding in the presence of one or more other individuals) on the acceptance and consumption of novel foods by captive orangutans (Pongo sp). Repeated exposures of food (novel, at first) did not cause an increase of acceptance of food; in other words, the orangutans did not start to eat a food item after being exposed to that food more often, but repeated exposures of food increased consumption (i.e. quantity). After repeated exposures, the orangutans also became gradually more familiar with the food, decreasing their explorative behaviour. The presence of co-feeding conspecifics resulted in an increased acceptance of the novel food by orangutans, and they ate a larger amount of said foods than when alone. Repeated exposure and sociality may benefit rehabilitant great apes in augmenting and diversifying diet and, once practiced before release, may accelerate an individuals' adaptation to their new habitat, improving survival chances. Great ape rescue, rehabilitation and reintroduction require large financial and logistic investments; however, their effectiveness may be improved at low cost and low effort through the suggested measures.


Assuntos
Comportamento Alimentar , Pongo/fisiologia , Comportamento Social , Animais , Feminino , Masculino
11.
PLoS One ; 8(7): e69749, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23861981

RESUMO

Arbitrariness is an elementary feature of human language, yet seldom an object of comparative inquiry. While arbitrary signals for the same function are relatively frequent between animal populations across taxa, the same signal with arbitrary functions is rare and it remains unknown whether, in parallel with human speech, it may involve call production in animals. To investigate this question, we examined a particular orangutan alarm call - the kiss-squeak - and two variants - hand and leaf kiss-squeaks. In Tuanan (Central Kalimantan, Indonesia), the acoustic frequency of unaided kiss-squeaks is negatively related to body size. The modified variants are correlated with perceived threat and are hypothesized to increase the perceived body size of the sender, as the use of a hand or leaves lowers the kiss-squeak's acoustic frequency. We examined the use of these variants in the same context in another orangutan population of the same sub-species and with partially similar habitat at Cabang Panti (West Kalimantan, Indonesia). Identical analyses of data from this site provided similar results for unaided kiss-squeaks but dissimilar results for hand and leaf kiss-squeaks. Unaided kiss-squeaks at Cabang Panti were emitted as commonly and showed the same relationship to body size as in Tuanan. However, at Cabang Panti, hand kiss-squeaks were extremely rare, while leaf-use neither conveyed larger body size nor was related to perceived threat. These findings indicate functional discontinuity between the two sites and therefore imply functional arbitrariness of leaf kiss-squeaks. These results show for the first time the existence of animal signals involving call production with arbitrary function. Our findings are consistent with previous studies arguing that these orangutan call variants are socially learned and reconcile the role of gestures and calls within evolutionary theories based on common ancestry for speech and music.


Assuntos
Comunicação Animal , Pongo pygmaeus/fisiologia , Animais , Feminino , Aprendizagem , Masculino
12.
Int J Primatol ; 33(2): 287-304, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22467998

RESUMO

Meat-eating is an important aspect of human evolution, but how meat became a substantial component of the human diet is still poorly understood. Meat-eating in our closest relatives, the great apes, may provide insight into the emergence of this trait, but most existing data are for chimpanzees. We report 3 rare cases of meat-eating of slow lorises, Nycticebus coucang, by 1 Sumatran orangutan mother-infant dyad in Ketambe, Indonesia, to examine how orangutans find slow lorises and share meat. We combine these 3 cases with 2 previous ones to test the hypothesis that slow loris captures by orangutans are seasonal and dependent on fruit availability. We also provide the first (to our knowledge) quantitative data and high-definition video recordings of meat chewing rates by great apes, which we use to estimate the minimum time necessary for a female Australopithecus africanus to reach its daily energy requirements when feeding partially on raw meat. Captures seemed to be opportunistic but orangutans may have used olfactory cues to detect the prey. The mother often rejected meat sharing requests and only the infant initiated meat sharing. Slow loris captures occurred only during low ripe fruit availability, suggesting that meat may represent a filler fallback food for orangutans. Orangutans ate meat more than twice as slowly as chimpanzees (Pan troglodytes), suggesting that group living may function as a meat intake accelerator in hominoids. Using orangutan data as a model, time spent chewing per day would not require an excessive amount of time for our social ancestors (australopithecines and hominids), as long as meat represented no more than a quarter of their diet. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10764-011-9574-z) contains supplementary material, which is available to authorized users.

13.
PLoS One ; 7(5): e36180, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22586464

RESUMO

BACKGROUND: Several studies suggested great ape cultures, arguing that human cumulative culture presumably evolved from such a foundation. These focused on conspicuous behaviours, and showed rich geographic variation, which could not be attributed to known ecological or genetic differences. Although geographic variation within call types (accents) has previously been reported for orang-utans and other primate species, we examine geographic variation in the presence/absence of discrete call types (dialects). Because orang-utans have been shown to have geographic variation that is not completely explicable by genetic or ecological factors we hypothesized that this will be similar in the call domain and predict that discrete call type variation between populations will be found. METHODOLOGY/PRINCIPAL FINDINGS: We examined long-term behavioural data from five orang-utan populations and collected fecal samples for genetic analyses. We show that there is geographic variation in the presence of discrete types of calls. In exactly the same behavioural context (nest building and infant retrieval), individuals in different wild populations customarily emit either qualitatively different calls or calls in some but not in others. By comparing patterns in call-type and genetic similarity, we suggest that the observed variation is not likely to be explained by genetic or ecological differences. CONCLUSION/SIGNIFICANCE: These results are consistent with the potential presence of 'call cultures' and suggest that wild orang-utans possess the ability to invent arbitrary calls, which spread through social learning. These findings differ substantially from those that have been reported for primates before. First, the results reported here are on dialect and not on accent. Second, this study presents cases of production learning whereas most primate studies on vocal learning were cases of contextual learning. We conclude with speculating on how these findings might assist in bridging the gap between vocal communication in non-human primates and human speech.


Assuntos
Evolução Biológica , DNA Mitocondrial/genética , Aprendizagem , Pongo , Vocalização Animal , Animais , Genética Populacional/métodos , Genótipo , Haplótipos , Humanos , Pongo/genética , Pongo/fisiologia , Fala/fisiologia , Vocalização Animal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA