Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 32(2): e2514, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35094444

RESUMO

Severe droughts are predicted to become more frequent in the future, and the consequences of such droughts on forests can be dramatic, resulting in massive tree mortality, rapid change in forest structure and composition, and substantially increased risk of catastrophic fire. Forest managers have tools at their disposal to try to mitigate these effects but are often faced with limited resources, forcing them to make choices about which parts of the landscape to target for treatment. Such planning can greatly benefit from landscape vulnerability assessments, but many existing vulnerability analyses are unvalidated and not grounded in robust empirical datasets. We combined robust sets of ground-based plot and remote sensing data, collected during the 2012-2016 California drought, to develop rigorously validated tools for assessing forest vulnerability to drought-related canopy tree mortality for the mixed conifer forests of the Sequoia and Kings Canyon national parks and potentially for mixed conifer forests in the Sierra Nevada as a whole. Validation was carried out using a large external dataset. The best models included normalized difference vegetation index (NDVI), elevation, and species identity. Models indicated that tree survival probability decreased with greenness (as measured by NDVI) and elevation, particularly if trees were growing slowly. Overall, models showed good calibration and validation, especially for Abies concolor, which comprise a large majority of the trees in many mixed conifer forests in the Sierra Nevada. Our models tended to overestimate mortality risk for Calocedrus decurrens and underestimate risk for pine species, in the latter case probably due to pine bark beetle outbreak dynamics. Validation results indicated dangers of overfitting, as well as showing that the inclusion of trees already under attack by bark beetles at the time of sampling can give false confidence in model strength, while also biasing predictions. These vulnerability tools should be useful to forest managers trying to assess which parts of their landscape were vulnerable during the 2012-2016 drought, and, with additional validation, may prove useful for ongoing assessments and predictions of future forest vulnerability.


Assuntos
Incêndios , Pinus , Traqueófitas , Animais , Secas , Florestas
2.
Ecol Appl ; 31(7): e02395, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34164888

RESUMO

Between 2012 and 2016, California suffered one of the most severe droughts on record. During this period Sequoiadendron giganteum (giant sequoias) in the Sequoia and Kings Canyon National Parks (SEKI), California, USA experienced canopy water content (CWC) loss, unprecedented foliage senescence, and, in a few cases, death. We present an assessment of the vulnerability of giant sequoia populations to droughts that is currently lacking and needed for management. We used a temporal trend of remotely sensed CWC obtained between 2015 and 2017, and recently georeferenced giant sequoia crowns to quantify the vulnerability of 7,408 individuals in 10 groves in the northern portion of SEKI. CWC is sensitive to changes in liquid water in tree canopies; therefore, it is a useful metric for quantifying the response of sequoia trees to drought. Temporal trends indicated that 9% of giant sequoias had a significant decline or consistently low CWC, suggesting these trees were likely operating at low photosynthetic capacity and potentially at high risk to drought stress. We also found that 20% of the giant sequoias had an increase or consistently high level of CWC, indicating these trees were at low risk to drought stress. These vulnerability categories were used in a random forest model with a combination of topographic, fire-related, and climate variables to generate high-resolution vulnerability risk maps. These maps show that higher risk is associated with lower elevation and higher climate water deficit. We also found that sequoias at higher elevations but located near meadows had higher vulnerability risk. These results and the vulnerability maps can identify vulnerable sequoias that may be difficult to save or locations of refugia to be protected, and thus may aid forest managers in preparation for future droughts.


Assuntos
Secas , Sequoiadendron , California , Clima , Incêndios , Tecnologia de Sensoriamento Remoto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA