RESUMO
PURPOSE OF REVIEW: Hypertrophic cardiomyopathy (HCM) is a common inherited cardiac condition with potential for severe complications including sudden cardiac death. Early diagnosis allows appropriate risk stratification and prompt intervention to minimise the potential for adverse outcomes. The implications of poorly coordinated screening are significant, either missing relatives at high-risk or burdening low-risk individuals with a diagnosis associated with reduced life expectancy. We aim to guide clinicians through the diagnostic pathway through to novel treatment options. Several conditions mimic the condition, and we discuss the phenocopies and how to differentiate from HCM. RECENT FINDINGS: We summarise the latest developments informing clinical decision making in the modern era of myosin inhibitors and future gene editing therapies. Early identification will enable prompt referral to specialist centres. A diagnostic flowchart is included, to guide the general cardiology and heart failure clinician in important decision making regarding the care of the HCM patient and importantly their relatives at risk. We have highlighted the importance of screening because genotype-positive/phenotype-negative patients are likely to have the most to gain from novel therapies.
Assuntos
Cardiomiopatia Hipertrófica , Humanos , Cardiomiopatia Hipertrófica/terapia , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/genética , Morte Súbita Cardíaca/prevenção & controle , Morte Súbita Cardíaca/etiologia , Testes Genéticos/métodosRESUMO
The management of heart failure with a reduced ejection fraction is a true success story of modern medicine. Evidence from randomised clinical trials provides the basis for an extensive catalogue of disease-modifying drug treatments that improve both symptoms and survival. These treatments have undergone rigorous scrutiny by licensing and guideline development bodies to make them eligible for clinical use. With an increasing number of drug therapies however, it has become a complex management challenge to ensure patients receive these treatments in a timely fashion and at recommended doses. The tragedy is that, for a condition with many life-prolonging drug therapies, there remains a potentially avoidable mortality risk associated with delayed treatment. Heart failure therapeutic agents have conventionally been administered to patients in the chronological order they were tested in clinical trials, in line with the aggregate benefit observed when added to existing background treatment. We review the evidence for simultaneous expedited initiation of these disease-modifying drug therapies and how these strategies may focus the heart failure clinician on a time-defined smart goal of drug titration, while catering for patient individuality. We highlight the need for adequate staffing levels, especially heart failure nurse specialists and pharmacists, in a structure to provide the capacity to deliver this care. Finally, we propose a heart failure clinic titration schedule and novel practical treatment score which, if applied at each heart failure patient contact, could tackle treatment inertia by a constant assessment of attainment of optimal medical therapy.
Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Humanos , Volume Sistólico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Instituições de Assistência AmbulatorialRESUMO
Dilated cardiomyopathy (DCM) is a heterogenous group of disorders characterised by left ventricular dilatation and dysfunction, in the absence of factors affecting loading conditions such as hypertension or valvular disease, or significant coronary artery disease. The prevalence of idiopathic DCM is estimated between 1:250 and 1:500 individuals. Determining the aetiology of DCM can be challenging, particularly when evaluating an individual and index case with no classical history or investigations pointing towards an obvious acquired cause, or no clinical clues in the family history to suggest a genetic cause. We present a family affected by DCM associated with Filamin C variant, causing sudden cardiac death at a young age and heart failure due to severe left ventricular impairment and myocardial scarring. We review the diagnosis and treatment of DCM, its genetic associations and potential acquired causes. Thorough assessment is mandatory to risk stratify and identify patients who may benefit from primary prevention implantable cardioverter defibrillator therapy according to international guidelines. Genetic testing has some limitations, and is positive in only 20%-35% of DCM, but should be considered in specific cases to identify families who may benefit from cascade screening after appropriate counselling. The management of often complex familial cardiomyopathy requires specialist input for every case, and the appropriate infrastructure to coordinate investigations.