Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264316

RESUMO

The properties and functions of chromophores utilized by nature are strongly affected by the environment formed by the protein structure in the cells surrounding them. This concept is transferred here to host-guest complexes with the encapsulated guests acting as an environmental stimulus. A new cyclophane host based on coronene bisimide is presented that can encapsulate a wide variety of planar guest molecules with binding constants up to (4.29 ± 0.32) × 1010 M-1 in chloroform. Depending on the properties of the chosen guest, the excited state deactivation of the coronene bisimide chromophore can be tuned by the formation of host-guest complexes toward fluorescence, exciplex formation, charge separation, room-temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). The photophysical processes were investigated by UV/vis absorption, emission, and femto- and nanosecond transient absorption spectroscopy. To enhance the TADF, two different strategies were used by employing suitable guests: the reduction of the singlet-triplet gap by exciplex formation and the external heavy atom effect. Altogether, by using supramolecular host-guest complexation, a versatile multimodal chromophore system is achieved with the coronene bisimide cyclophane.

2.
Chemistry ; 30(29): e202400499, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38502668

RESUMO

We report the room temperature phosphorescence upon iodination on a crystalline eumelanin monomer with shielded hydroxyl moieties, ethyl 5,6-dimethoxyindole-2-carboxylate (DMICE). Ultrafast intersystem crossing (ISC) is observed in the iodinated (IDMICE) as well as brominated (BDMICE) analogues of the eumelanin monomer derivative in solution. The triplet quantum yields (φT) and intersystem crossing rates (kISC) of the halogenated eumelanin derivatives are φ T B D M I C E ${{\phi{} }_{T}^{BDMICE}}$ =25.4±1.1 %; k I S C B D M I C E ${{k}_{ISC}^{BDMICE}}$ =1.95×109 s-1 and φ T I D M I C E ${{\phi{} }_{T}^{IDMICE}}$ =59.1±1.6 %; k I S C I D M I C E = ${{k}_{ISC}^{IDMICE}=}$ 1.36×1010 s-1, as monitored using transient absorption spectroscopy. Theoretical calculations based on nuclear ensemble method reveal that computed kISC and spin-orbit coupling matrix elements for eumelanin derivatives are larger for IDMICE relative to BDMICE. The halogen and π-π interactions, with distinct excitonic coupling and higher ISC rate promote phosphorescence in IDMICE molecular crystals. Accessing triplet excited states and resultant photoluminescence through structural modification of eumelanin scaffolds paves way for exploring the versatility of eumelanin-inspired molecules as bio-functional materials.

3.
Chemistry ; 30(50): e202401969, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38956975

RESUMO

The investigation of impact of through-space/through-bond electronic interaction among chromophores on photoexcited-state properties has immense potential owing to the distinct emergent photophysical pathways. Herein, the photoexcited-state dynamics of homo-sorted π-stacked aggregates of a naphthalenemonoimide and perylene-based acceptor-donor (NI-Pe) system and a fork-shaped acceptor-bisdonor (NI-Pe2) system possessing integrally stacked peri-substituted donors was examined. Femtosecond transient absorption (fsTA) spectra of NI-Pe monomer recorded in chloroform displayed spectroscopic signatures of the singlet state of Pe; 1Pe*, the charge-separated state; NI-⋅-Pe+⋅, and the triplet state of Pe; 3Pe*. The examination of ultrafast excited-state processes of NI-Pe aggregate in chloroform revealed faster charge recombination ( τ C R a ${{\tau }_{CR}^{a}}$ =1.75 ns) than the corresponding monomer ( τ C R m ${{\tau }_{CR}^{m}}$ =2.46 ns) which was followed by observation of a broad structureless band attributed to an excimer-like state. The fork-shaped NI-Pe2 displayed characteristic spectroscopic features of the NI radical anion (λmax~450 nm) and perylene dimer radical cation (λmax~520 nm) upon photoexcitation in non-polar toluene solvent in the nanosecond transient absorption (nsTA) spectroscopy. The investigation highlights the significance of intrinsic close-stacked arrangement of donors in ensuring a long-lived photoinduced charge-separated state ( τ C R ${{\tau }_{CR}}$ =1.35 µs) in non-polar solvents via delocalization of radical cation between the donors.

4.
Phys Chem Chem Phys ; 26(3): 2007-2015, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38126428

RESUMO

Understanding the self-assembly of conjugated organic materials at the molecular level is crucial in their potential applications as active components in electronic and optoelectronic devices. The type of aggregation significantly influences the intriguing electronic and optical characteristics differing from their constituent molecules. Perylenediimides (PDIs), electron-deficient molecules exhibiting remarkable n-type semiconducting properties, are among the most explored organic fluorescent materials due to their high fluorescence efficiency, photostability, and optoelectronic properties. PDI derivatives are reported to form well-tailored supramolecular architectures: cofacial with minor slip (H-aggregates), staggered with major slip (J-aggregates), magic angle stacking (M-aggregates), rotated (X-aggregates), rotated orthogonal ((+)-aggregates), etc. H*-aggregates are defined here as an ideal case of H-aggregate with an eclipsed configuration. Although numerous reports regarding the formation and optical properties of various PDI aggregates are known, the key driving force within the PDI units guiding the self-assembly to form distinct aggregate systems remains elusive. To unravel the molecular-level mechanisms behind the self-assembly of PDI units by probing the intermolecular interactions, symmetry-adapted perturbation theory-based energy decomposition, potential energy surface scans, and non-covalent interaction index analyses were employed on PDI dimer models. Quantum theory of atoms in molecules and frontier molecular orbital analyses were implemented on the dimer models to comprehend the effect of heteroatoms and orbital interactions in stabilising the X-aggregates over the other PDI aggregate systems. Competition between the attractive and repulsive non-covalent interactions dictates a stability order of X > H > J > M > (+) > H* for the PDI aggregate system, while in the parent perylene system, the stability order was found to be X > (+) > H > M > J > H*.

5.
Chem Soc Rev ; 52(19): 6664-6679, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37606527

RESUMO

Fundamental understanding of the supramolecular assemblies of organic chromophores and the development of design strategies have seen endless ripples of interest owing to their exciting photophysical properties and optoelectronic applications. The independent discovery of dye aggregates by Jelley and Scheibe was the commencement of the remarkable advancement in the field of aggregate photophysics. Subsequent research warranted an exceptional model for defining the exciton interactions in aggregates, proposed by Davydov, Kasha and co-workers, independently, based on the long-range Coulombic coupling. Fascinatingly, the orthogonally cross-stacked molecular transition dipole arrangement was foretold by Kasha to possess null exciton interaction leading to spectroscopically uncoupled molecular assembly, which lacked an experimental signature for decades. There have been several attempts to identify and probe atypical molecular aggregates for decoding their optical behaviour. Herein, we discuss the recent efforts in experimentally verifying the unusual exciton interactions supported with quantum chemical computations, primarily focusing on the less explored null exciton splitting. Exciton engineering can be realized through synthetic modifications that can additionally offer control over the assorted non-covalent interactions for orchestrating precise supramolecular assembly, along with molecular editing. The task of attaining a minimal excitonic coupling through an orthogonally cross-stacked crystalline architecture envisaged to offer a monomer-like optical behaviour was first reported in 1,7-dibromoperylene-3,4,9,10-tetracarboxylic tetrabutylester (PTE-Br2). The attempt to stitch molecules covalently in an orthogonal fashion to possess null excitonic character culminated in a spiro-conjugated perylenediimide dimer exhibiting a monomer-like spectroscopic signature. The computational and experimental efforts to map the emergent properties of the cross-stacked architecture are also discussed here. Using the null aggregates formed by the interference effects between CT-mediated and Coulombic couplings in the molecular array is another strategy for achieving monomer-like spectroscopic properties in molecular assemblies. Moreover, identifying supramolecular assemblies with precise angle-dependent properties can have implications in functional material design, and this review can provide insights into the uncharted realm of null exciton splitting.

6.
Chem Rev ; 121(13): 8234-8284, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34133137

RESUMO

Inspired by the high photoconversion efficiency observed in natural light-harvesting systems, the hierarchical organization of molecular building blocks has gained impetus in the past few decades. Particularly, the molecular arrangement and packing in the active layer of organic solar cells (OSCs) have garnered significant attention due to the decisive role of the nature of donor/acceptor (D/A) heterojunctions in charge carrier generation and ultimately the power conversion efficiency. This review focuses on the recent developments in emergent optoelectronic properties exhibited by self-sorted donor-on-donor/acceptor-on-acceptor arrangement of covalently linked D-A systems, highlighting the ultrafast excited state dynamics of charge transfer and transport. Segregated organization of donors and acceptors promotes the delocalization of photoinduced charges among the stacks, engendering an enhanced charge separation lifetime and percolation pathways with ambipolar conductivity and charge carrier yield. Covalently linking donors and acceptors ensure a sufficient D-A interface and interchromophoric electronic coupling as required for faster charge separation while providing better control over their supramolecular assemblies. The design strategies to attain D-A conjugate assemblies with optimal charge carrier generation efficiency, the scope of their application compared to state-of-the-art OSCs, current challenges, and future opportunities are discussed in the review. An integrated overview of rational design approaches derived from the comprehension of underlying photoinduced processes can pave the way toward superior optoelectronic devices and bring in new possibilities to the avenue of functional supramolecular architectures.

7.
Phys Chem Chem Phys ; 25(41): 28428-28436, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37843851

RESUMO

The efficient population of the triplet excited states in heavy metal-free organic chromophores has been one of the long-standing research problems to molecular photochemists. The negligible spin-orbit coupling matrix elements in the purely organic chromophores and the large singlet-triplet energy gap (ΔES-T) pose a hurdle for ultrafast intersystem crossing (ISC). Herein we report the unprecedented population of triplet manifold in a series of nitrogen-annulated perylene bisimide chromophores (NPBI and Br-NPBI). NPBI is found to have a moderate fluorescence quantum yield (Φf = 68 ± 5%), whereas Br-NPBI showcased a low fluorescence quantum yield (Φf = 2.0 ± 0.6%) in toluene. The femtosecond transient absorption measurements of Br-NPBI revealed ultrafast ISC (kISC = 1.97 × 1010 s-1) from the initially populated singlet excited state to the long-lived triplet excited states. The triplet quantum yields (ΦT = 95.2 ± 4.6% for Br-NPBI, ΦT = 18.7 ± 2.3% for NPBI) calculated from nanosecond transient absorption spectroscopy measurements showed the enhancement in triplet population upon bromine substitution. The quantum chemical calculations revealed the explicit role of nitrogen annulation in tuning the excited state energy levels to favor the ISC. The near degeneracy between the singlet and triplet excited states observed in NPBI and Br-NPBI (ΔES-T = -0.01 eV for NPBI, ΔES-T = 0.03 eV for Br-NPBI) facilitates the spin flipping in the molecules. Nitrogen annulation emerges as a design strategy to open up the ISC pathway and the rate of which can be further enhanced by the substitution of a heavier element.

8.
Phys Chem Chem Phys ; 25(40): 26986-26990, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37812393

RESUMO

Theoretical investigations on the influence of graphene fragments on the antiaromaticity of pentalene are conducted by employing multiple aromaticity descriptors based on magnetic, geometric and electronic criteria. NICS as a sole descriptor for analysing the antiaromaticity of pentalene on graphene fragments has to be carefully considered while looking through the other aromaticity indicators.

9.
Angew Chem Int Ed Engl ; 62(12): e202216482, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36697363

RESUMO

We report a long-lived charge-separated state in a chromophoric pair (DC-PDI2 ) that uniquely integrates the advantages of fundamental processes of photosynthetic reaction centers: i) Symmetry-breaking charge-separation (SB-CS) and ii) Marcus-inverted-region dependence. The near-orthogonal bichromophoric DC-PDI2 manifests an ultrafast evolution of the SB-CS state with a time constant of τ S B - C S ${{\tau }_{{\rm S}{\rm B}-{\rm C}{\rm S}}}$ =0.35±0.02 ps and a slow charge recombination (CR) kinetics with τ C R ${{\tau }_{{\rm C}{\rm R}}}$ =4.09±0.01 ns in ACN. The rate constant of CR of DC-PDI2 is 11 686 times slower than SB-CS in ACN, as the CR of the PDI radical ion-pair occurs in the deep inverted region of the Marcus parabola ( - Δ G C R ${{-{\rm \Delta }G}_{{\rm C}{\rm R}}}$ >λ). In contrast, an analogous benzyloxy (BnO)-substituted DC-BPDI2 showcases a ≈10-fold accelerated CR kinetics with τ C R / τ S B - C S ${{\tau }_{{\rm C}{\rm R}}/{\tau }_{{\rm S}{\rm B}-{\rm C}{\rm S}}}$ lowering to ≈1536 in ACN, by virtue of a decreased CR driving force. The present investigation demonstrates a control of molecular engineering to tune the energetics and kinetics of the SB-CS material, which is essential for next-generation optoelectronic devices.

10.
Chemphyschem ; 23(11): e202200045, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35532154

RESUMO

The implication of the potential concept of aromaticity in the relaxed lowest triplet state of azobenzene, an efficient molecular switch, using elementary aromaticity indices based on magnetic, electronic, and geometric criteria has been discussed. Azobenzene exhibits a major Hückel aromatic character retained in the diradical lowest relaxed triplet state (T1 ) by virtue of a twisted geometry with partial delocalization of unpaired electrons in the perpendicular p-orbitals of two nitrogen atoms to the corresponding phenyl rings. The computational analysis has been expanded further to stilbene and N-diphenylmethanimine for an extensive understanding of the effect of closed-shell Hückel aromaticity in double-bond-linked phenyl rings. Our analysis concluded that stilbene has Hückel aromatic character in the relaxed T1 state and N-diphenylmethanimine has a considerable Hückel aromaticity in the phenyl ring near the carbon atom while a paramount Baird aromaticity in the phenyl ring near the nitrogen atom of the C=N double bond. The results reveal the application of excited-state aromaticity as a general tool for the design of molecular switches.


Assuntos
Elétrons , Estilbenos , Compostos Azo , Nitrogênio
11.
Phys Chem Chem Phys ; 24(26): 16193-16199, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35749225

RESUMO

Singlet fission (SF) is a spin-allowed, exciton-multiplying phenomenon that can be utilized to improve the efficiency of organic solar cells. It is well-understood that SF is sensitive to the local crystal morphology and an appropriately balanced coupling is essential to facilitate efficient SF. In this study, we show how the interchromophoric rotation selectively modulates the interaction between the monomer frontier molecular orbitals, promoting both fast and exothermal SF. We evaluate the effective electronic coupling for SF (VSF), the square of which is proportional to the SF rate, and the effective energies of the Frenkel exciton (FE/S1S0) and triplet pair exciton (TT) in a terrylene dimer model. Optimal interplanar rotation of the chromophoric moieties in slip-stacked arrangements pulls the effective energy of the TT state below that of the FE state. Consequently, SF is favored over competing pathways such as excimer formation, thereby enhancing the overall triplet yield. This work represents a step towards improvising the molecular design guidelines for SF and understanding the importance of interchromophoric rotation over the conventional slip-stacked arrangements for achieving favorable intermolecular electronic coupling towards efficient SF.

12.
J Phys Chem A ; 126(23): 3765-3773, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35666186

RESUMO

The purpose of this study is to investigate the role of a structured immediate phonon environment in determining the exciton dynamics and the possibility of using it as an optimal design element. Through the case study of dithia-anthracenophane, a bichromophore using the Hierarchical Equations Of Motion formalism, we show that the experimentally observed coherent exciton dynamics can be reproduced only by considering the actual structure of the phonon environment. While the slow dephasing of quantum coherence in dithia-anthracenophane can be attributed to strong vibronic coupling to high-frequency modes, vibronic quenching is the source of long oscillation periods in population transfer. This study sheds light on the crucial role of the structure of the immediate phonon environment in determining the exciton dynamics. We conclude by proposing some design principles for sustaining long-lived coherence in molecular systems.

13.
J Am Chem Soc ; 143(34): 13769-13781, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34370481

RESUMO

A comprehensive understanding of the structure-property relationships in multichromophoric architectures has pushed the limits for developing robust photosynthetic mimics and molecular photovoltaics. The elusive phenomenon of null exciton splitting has gathered immense attention in recent years owing to the occurrence in unique chromophoric architectures and consequent emergent properties. Herein, we unveil the hitherto unobserved null exciton coupling assisted highly efficient photoinduced symmetry-breaking charge separation (SB-CS) in a Greek cross (+)-oriented spiro-conjugated perylenediimide dimer (Sp-PDI2). Quantum chemical calculations have rationalized the infrequent manifestation of null exciton coupling behavior in Sp-PDI2. Negligible contribution of long-range Coulombic and short-range charge-transfer mediated coupling renders a monomer-like spectroscopic signature for Sp-PDI2 in toluene. The Greek cross (+)-arranged Sp-PDI2 possesses a selective hole-transfer coupling, facilitating the ultrafast dissociation of null excitons and evolution of the charge-separated state in polar solvents. Radical cationic and anionic spectroscopic signatures were characterized by employing femtosecond transient absorption spectroscopy. The substantial hole transfer electronic coupling and lower activation energy barrier of Sp-PDI2 accelerated the charge separation rate. The rate of charge recombination (CR) markedly decelerated due to falling into the inverted region of the Marcus parabola, where the driving force of CR is larger than the total reorganization energy for CR. Hence, the ratio of the rates for SB-CS over CR of Sp-PDI2 exhibited an unprecedently high value of 2647 in acetonitrile. The current study provides impeccable evidence for the role of selective charge filtering in governing efficient SB-CS and thereby novel insights towards the design of biomimics and advanced functional materials.

14.
Chem Soc Rev ; 49(17): 6122-6140, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32794539

RESUMO

Over the last several decades, exploring the pathways to access the triplet excited states of organic chromophores has been a stimulating area of research. Among the numerous photoinduced processes in organic chromophores, analysis of intersystem crossing (ISC) dynamics has received immense attention. The ISC process involves a spin-forbidden horizontal transition from an excited singlet state to a higher vibrational level of the isoenergetic triplet state. Generally, ISC necessitates a strong driving force from efficient spin-orbit coupling (SOC) between the singlet and triplet wavefunctions. The magnitude of SOC can be tuned by the substituent groups (e.g. heavy atoms, carbonyl moieties) or by the out-of-plane vibrational modes in the chromophores. Besides the SOC induced ISC pathway, triplet excited states are also realised in organic chromophores through singlet fission or via charge recombination. Accessing the triplet manifold in π-conjugated systems would also include a possible evolution to more aromatically stable configurations in the excited states, an emerging area that needs attention. In the aforesaid mechanisms, the molecular architecture and/or packing arrangement of the chromophores are vital for the effective population of triplet states. We, herein, present a collection of synthetic, spectroscopic and theoretical investigations that provide insights into the diverse pathways to access triplet excited states in organic chromophores. We believe this tutorial review would prove beneficial for researchers to achieve triplet excited states of organic chromophores for numerous biochemical and optoelectronic applications.

15.
J Am Chem Soc ; 142(41): 17393-17402, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32875791

RESUMO

Null aggregates are an elusive, emergent class of molecular assembly categorized as spectroscopically uncoupled molecules. Orthogonally stacked chromophoric arrays are considered as a highlighted architecture for null aggregates. Herein, we unveil the null exciton character in a series of crystalline Greek cross (+)-assembly of 6,13-bisaryl-substituted pentacene derivatives. Quantum chemical computations suggest that the synergistic perpendicular orientation and significant interchromophoric separations realize negligible long-range Coulombic and short-range charge-transfer-mediated couplings in the null aggregate. The Greek cross (+)-orientation of pentacene dimers exhibits a selectively higher electron-transfer coupling with near-zero hole-transfer coupling and thereby contributes to the lowering of charge-transfer-mediated coupling even at shorter interchromophoric distances. Additional investigations on the nature of excitonic states of pentacene dimers proved that any deviation from a 90° cross-stacked orientation results in the emergence of delocalized Frenkel/mixed-Frenkel-CT character and the consequent loss of null exciton/monomer-like properties. The retention of exciton isolation even at a short-range coupling regime reassures the universality of null excitonic character in perpendicularly cross-stacked pentacene systems. The null-excitonic character was experimentally verified by the observation of similar spectral characteristics in the crystalline and monomeric solution state for 6,13-bisaryl-substituted pentacene derivatives. The partitioned influence of aryl and pentacene fragments on interchromophoric noncovalent interactions and photophysical properties, respectively, resulted in the emergence of pentacene centric Kasha's ideal null exciton, providing novel insights toward design strategies for cross-stacked chromophoric assemblies. Identifying the Greek cross (+)-stacked architecture-mediated null excitons with a charge-filtering phenomenon for the first time in the ever-versatile pentacene chromophoric systems can offer an extensive ground for the engineering of functional materials with advanced optoelectronic properties.

16.
Acc Chem Res ; 52(11): 3075-3086, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31449389

RESUMO

Spatial noncovalent helical organization of nucleobases in DNA and radial organization of chromophores in natural light-harvesting systems are fascinating yet enigmatic. Understanding the numerous weak interactions that drive the formation of elegant supramolecular architectures in native natural systems and developing bioinspired design strategies have seen a surge of interest in recent decades. Self-assembly of functional chromophores in the crystalline phase is a definitive strategy to identify novel molecule-molecule interactions, in particular, atom-atom interactions, and to understand the synergistic nature of noncovalent interactions that stabilizes the supramolecular organization. This Account narrates our recent efforts in developing desirable supramolecular motifs employing weak interaction-based strategies and our observation of deviations from the common motifs chartered in aromatic systems. Modulation of long-range aromatic interactions through chemical modifications (acylation, benzoylation, haloacylation, and alkylation of chromophores) to attain a preferred stacking (herringbone, lamellar, or columnar) is presented. Particular attention has been given to attaining lamellar or columnar packing possessing potential interchromophoric electronic coupling mediated high charge mobility. Supramolecular arrangements of noncovalently or covalently associated donor-acceptor systems that open up additional possibilities of packing modes (segregated, mixed etc.) are explored. Our persistent efforts yielded distinct twisted-segregated and alternate distichous stacks for the nonparallel covalently linked donor-acceptor systems that favor a long-lived photoinduced charge-separated state. We further move on to discuss the unconventional packing motifs that were identified recently. The highly sought-after Greek cross (+) stacking of chromophores in crystalline phase and an elegant crystalline radial arrangement of chromophores are examined. The Greek cross (+) stacked architecture exhibits monomer-like emission characteristics owing to the absence of exciton coupling across the orthogonally stacked chromophores. Crystalline helical chromophore assembly is yet another emerging motif with far-reaching applications in domains ranging from asymmetric catalysis to chiral smart materials and has been accounted here by citing certain phenomenal examples from literature. Thus, this Account demonstrates that identifying and classifying new structural motifs based on topological aspects, such as interchromophoric orientation (cross) and extended chromophore arrangement in the crystal lattice (radial, helical, etc.), are crucial since such fundamental characteristics dictate the properties emerging out of the corresponding motifs. Encouraged from ours and others' works, we propose the addition of new aromatic supramolecular structural motifs, namely, cross-stacked, helical, and radial arrangements, in order to expand the classification. We believe that identifying new emergent property-based supramolecular motifs and investigating the methods to achieve the desired motif will eventually have implications in fundamental crystal engineering, supramolecular chemistry, and biomimetic design of functional materials.


Assuntos
Hidrocarbonetos Aromáticos/química , Complexos de Proteínas Captadores de Luz/química , Cristalização , Hidrocarbonetos Aromáticos/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Estrutura Molecular
17.
Angew Chem Int Ed Engl ; 59(8): 3201-3208, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31793722

RESUMO

The self-assembly of chiral organic chromophores is gaining huge significance due to the abundance of supramolecular chirality found in natural systems. We report an interdigitated molecular assembly involving axially chiral octabrominated perylenediimide (OBPDI) which transfers chiral information to achiral aromatic moieties. The crystalline two-component assemblies of OBPDI and electron-rich aromatic units were facilitated through π-hole⋅⋅⋅π donor-acceptor interactions, and the charge-transfer characteristics in the ground and excited states of the OBPDI cocrystals were established through spectroscopic and theoretical techniques. The OBPDI cocrystals entail a remarkable homochiral segregation of P and M enantiomers of both molecular entities in the same crystal system, leading to twisted double-racemic arrangements. Synergistically engendered cavities with the stored chiral information of the twisted OBPDI stabilize higher-energy P/M enantiomers of trans-azobenzene through non-covalent interactions.

18.
J Am Chem Soc ; 141(11): 4536-4540, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30740979

RESUMO

The design of highly efficient supramolecular architectures that mimic competent natural systems requires a comprehensive knowledge of noncovalent interactions. Halogen bonding is an excellent noncovalent interaction that forms halogen-halogen (X2) as well as trihalogen interacting synthons. Herein, we report the first observation of a symmetric radial assembly of chromophores ( R3̅ c space group) composed of a stable hexabromine interacting synthon (Br6) that further push the limits of our understanding on the nature, role, and potential of noncovalent halogen bonding. Contrary to the destabilization proposed for Type-I X2 interactions, Br6-synthon-possessing Type-I X2 interactions exhibit a stabilizing nature owing to the exchange-correlation component. The radial assembly of chromophores is further strengthened by intermolecular through-space charge transfer interaction. Br6-synthon-driven 3-fold symmetric radial assembly render a lattice structure that reminisces the chromophoric arrangement in the light harvesting system 2 of purple bacteria.

19.
Chemistry ; 25(8): 1992-2002, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30431197

RESUMO

A collection of para-substituted propeller-shaped triphenylamine (TPA) derivatives have been computationally investigated for charge-transport characteristics exhibited by the derivatives by using the Marcus-Hush formalism. The various substituents chosen herein, with features that range from electron withdrawing to electron donating in nature, play a key role in defining the reorganisation energy and electronic coupling properties of the TPA derivatives. The TPA moiety is expected to possess weak electronic coupling on the basis of poor orbital overlap upon aggregation, owing to the restriction imposed by the propeller shape of the TPA core. However, the substituent groups attached to the TPA core can significantly dictate the crystal-packing motif of the TPA derivatives, wherein the variety of noncovalent intermolecular interactions subsequently generated drive the packing arrangement and influence electronic coupling between the neighbouring orbitals. Intermolecular interactions in the crystalline architecture of TPA derivatives were probed by using Hirshfeld and quantum theory of atoms-in-molecules techniques. Furthermore, symmetry-adapted perturbation theory analysis of the TPA analogues has revealed that a periodic arrangement of energetically stable dimers with significant electronic coupling is essential to contribute high charge-carrier mobility to the overall crystal.

20.
J Phys Chem A ; 123(29): 6105-6112, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30830769

RESUMO

Mapping the primary photochemical dynamics and transient intermediates in functional chromophores is vital for crafting archetypal light-harvesting materials. Although the excited state dynamics in 9-acetylanthracene is well explored, the origin of near-quantitative triplet population and the atypical intersystem crossing (ISC) rate as compared with the regioisomeric analogs (1-/2-acetylanthracene) have rarely been scrutinized. We present a comprehensive account of the photoinduced dynamics in three regioisomeric monoacetylanthracenes using ultrafast transient absorption and quantum chemical calculations. The conjoint experimental and computational investigations suggest that (i) greater stabilization of the 1nπ* relative to 1ππ* state, (ii) dissimilar 1ππ* → 1nπ* crossover barriers, and (iii) the strong spin-orbit coupling (νSO) of the 1nπ* state with the receiver 3ππ* state command the divergent triplet population in 1-/2-/9-acetylanthracenes. A tacit understanding of the subtle structural-alteration-facilitated contrasting ISC dynamics in carbonylated arenes can act as a stepping stone for the evolution of potent photofunctional materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA