Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 40(9): 2114-2126, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32640902

RESUMO

OBJECTIVE: Quantitative relationships between the extent of injury and thrombus formation in vivo are not well understood. Moreover, it has not been investigated how increased injury severity translates to blood-flow modulation. Here, we investigated interconnections between injury length, clot growth, and blood flow in a mouse model of laser-induced thrombosis. Approach and Results: Using intravital microscopy, we analyzed 59 clotting events collected from the cremaster arteriole of 14 adult mice. We regarded injury length as a measure of injury severity. The injury caused transient constriction upstream and downstream of the injury site resulting in a 50% reduction in arteriole diameter. The amount of platelet accumulation and fibrin formation did not depend on arteriole diameter or deformation but displayed an exponentially increasing dependence on injury length. The height of the platelet clot depended linearly on injury length and the arteriole diameter. Upstream arteriolar constriction correlated with delayed upstream velocity increase, which, in turn, determined downstream velocity. Before clot formation, flow velocity positively correlated with the arteriole diameter. After the onset of thrombus growth, flow velocity at the injury site negatively correlated with the arteriole diameter and with the size of the above-clot lumen. CONCLUSIONS: Injury severity increased platelet accumulation and fibrin formation in a persistently steep fashion and, together with arteriole diameter, defined clot height. Arterial constriction and clot formation were characterized by a dynamic change in the blood flow, associated with increased flow velocity.


Assuntos
Músculos Abdominais/irrigação sanguínea , Arteríolas/patologia , Coagulação Sanguínea , Trombose/patologia , Lesões do Sistema Vascular/patologia , Animais , Arteríolas/lesões , Arteríolas/fisiopatologia , Velocidade do Fluxo Sanguíneo , Plaquetas/metabolismo , Constrição Patológica , Modelos Animais de Doenças , Fibrina/metabolismo , Microscopia Intravital , Masculino , Camundongos , Microscopia de Fluorescência , Índice de Gravidade de Doença , Trombose/sangue , Trombose/fisiopatologia , Fatores de Tempo , Lesões do Sistema Vascular/sangue , Lesões do Sistema Vascular/fisiopatologia
2.
J Biomech Eng ; 141(11)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074759

RESUMO

Respiration is a dynamic process accompanied by morphological changes in the airways. Although deformation of large airways is expected to exacerbate pulmonary disease symptoms by obstructing airflow during increased minute ventilation, its quantitative effects on airflow characteristics remain unclear. Here, we used in vivo dynamic imaging and examined the effects of tracheal deformation on airflow characteristics under different conditions based on imaging data from a single healthy volunteer. First, we measured tracheal deformation profiles of a healthy lung using magnetic resonance imaging (MRI) during forced exhalation, which we simulated to characterize the subject-specific airflow patterns. Subsequently, for both inhalation and exhalation, we compared the airflows when the modeled deformation in tracheal cross-sectional area was 0% (rigid), 33% (mild), 50% (moderate), or 75% (severe). We quantified differences in airflow patterns between deformable and rigid airways by computing the correlation coefficients (R) and the root-mean-square of differences (Drms) between their velocity contours. For both inhalation and exhalation, airflow patterns were similar in all branches between the rigid and mild conditions (R > 0.9; Drms < 32%). However, airflow characteristics in the moderate and severe conditions differed markedly from those in the rigid and mild conditions in all lung branches, particularly for inhalation (moderate: R > 0.1, Drms < 76%; severe: R > 0.2, Drms < 96%). Our exemplar study supports the use of a rigid airway assumption to compute flows for mild deformation. For moderate or severe deformation, however, dynamic contraction should be considered, especially during inhalation, to accurately predict airflow and elucidate the underlying pulmonary pathology.

3.
Respir Physiol Neurobiol ; 272: 103311, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31585172

RESUMO

A characteristic feature of obstructive lung diseases is the narrowing of small airways, which affects regional airflow patterns within the lung. However, the extent to which these patterns differ between healthy and diseased states is unknown. To investigate airflow patterns in detail, we first used particle image velocimetry measurements to validate a large eddy simulation model of flow in a patient-specific geometry. We then predicted flow patterns in the central airway under exhalation for three flow conditions-normal, intermediate, and severe-where boundary conditions represented the effect of lower airway obstructions. We computed Pearson correlation coefficients (R) to assess the similarity of flow patterns, and found that flow patterns demonstrated the greatest differentiation between flow conditions in the right main bronchi (R ≤0.60), whereas those in the secondary branches and regions of the trachea showed high correlation (R ≥0.90). These results indicate that although flow patterns are distinct between flow conditions, the choice of measurement location is critical for differentiation.


Assuntos
Modelos Anatômicos , Modelos Biológicos , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fenômenos Fisiológicos Respiratórios , Adulto , Simulação por Computador , Humanos , Hidrodinâmica , Reologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-26465557

RESUMO

The motions of a red blood cell in Poiseuille flows in a range of channel widths are simulated using a two-dimensional model. For a range of initial off-centerline distances in a 12-µm channel, cell trajectories converge to a specific off-centerline position and exhibit tank-treading motions. This behavior coexists with initial positions that lead to migration towards the centerline. The predicted off-centerline focusing effect is shown to depend on the curvature of the flow profile and on interactions with both solid boundaries.


Assuntos
Movimento Celular , Eritrócitos , Hemodinâmica , Modelos Cardiovasculares , Simulação por Computador , Elasticidade , Microcirculação , Movimento (Física) , Pressão , Viscosidade
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 90(5-1): 053014, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25493888

RESUMO

The motion of a red blood cell suspended in a linear shear flow adjacent to a fixed boundary subject to an applied lateral force directed toward the boundary is simulated. A two-dimensional model is used that represents the viscous and elastic properties of normal red blood cells. Shear rates in the range of 100 to 600 s^{-1} are considered, and the suspending medium viscosity is 1 cP. In the absence of a lateral force, the cell executes a tumbling motion. With increasing lateral force, a transition from tumbling to tank-treading is predicted. The minimum force required to ensure tank-treading increases nonlinearly with the shear rate. Transient swinging motions occur when the force is slightly larger than the transition value. The applied lateral force is balanced by a hydrodynamic lift force resulting from the positive orientation of the long axis of the cell with respect to the wall. In the case of cyclic tumbling motions, the orientation angle takes positive values through most of the cycle, resulting in lift generation. These results are used to predict the motion of a cell close to the outer edge of the cell-rich core region that is generated when blood flows in a narrow tube. In this case, the lateral force is generated by shear-induced dispersion, resulting from cell-cell interactions in a region with a concentration gradient. This force is estimated using previous data on shear-induced dispersion. The cell is predicted to execute tank-treading motions at normal physiological hematocrit levels, with the possibility of tumbling at lower hematocrit levels.

6.
J Fluid Mech ; 705: 195-212, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23493820

RESUMO

A two-dimensional model is used to simulate the motion and deformation of a single mammalian red blood cell (RBC) flowing close to the wall of a microvessel, taking into account the effects of a porous endothelial surface layer (ESL) lining the vessel wall. Migration of RBCs away from the wall leads to the formation of a cell-depleted layer near the wall, which has a large effect on the resistance to blood flow in microvessels. The objective is to examine the mechanical factors causing this migration, including the effects of the ESL. The vessel is represented as a straight parallel-sided channel. The RBC is represented as a set of interconnected viscoelastic elements, suspended in plasma, a Newtonian fluid. The ESL is represented as a porous medium, and plasma flow in the layer is computed using the Brinkman approximation. It is shown that an initially circular cell positioned close to the ESL in a shear flow is deformed into an asymmetric shape. This breaking of symmetry leads to migration away from the wall. With increasing hydraulic resistivity of the layer, the rate of lateral migration increases. It is concluded that mechanical interactions of RBCs flowing in microvessels with a porous wall layer may reduce the rate of lateral migration and hence reduce the width of the cell-depleted zone external to the ESL, relative to the cell-depleted zone that would be formed if the interface between the ESL and free-flowing plasma were replaced by an impermeable boundary.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA