Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
PLoS Pathog ; 19(7): e1011491, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37399210

RESUMO

Coxiella burnetii is a Gram-negative intracellular pathogen that causes the debilitating disease Q fever, which affects both animals and humans. The only available human vaccine, Q-Vax, is effective but has a high risk of severe adverse reactions, limiting its use as a countermeasure to contain outbreaks. Therefore, it is essential to identify new drug targets to treat this infection. Macrophage infectivity potentiator (Mip) proteins catalyse the folding of proline-containing proteins through their peptidyl prolyl cis-trans isomerase (PPIase) activity and have been shown to play an important role in the virulence of several pathogenic bacteria. To date the role of the Mip protein in C. burnetii pathogenesis has not been investigated. This study demonstrates that CbMip is likely to be an essential protein in C. burnetii. The pipecolic acid derived compounds, SF235 and AN296, which have shown utility in targeting other Mip proteins from pathogenic bacteria, demonstrate inhibitory activities against CbMip. These compounds were found to significantly inhibit intracellular replication of C. burnetii in both HeLa and THP-1 cells. Furthermore, SF235 and AN296 were also found to exhibit antibiotic properties against both the virulent (Phase I) and avirulent (Phase II) forms of C. burnetii Nine Mile Strain in axenic culture. Comparative proteomics, in the presence of AN296, revealed alterations in stress responses with H2O2 sensitivity assays validating that Mip inhibition increases the sensitivity of C. burnetii to oxidative stress. In addition, SF235 and AN296 were effective in vivo and significantly improved the survival of Galleria mellonella infected with C. burnetii. These results suggest that unlike in other bacteria, Mip in C. burnetii is required for replication and that the development of more potent inhibitors against CbMip is warranted and offer potential as novel therapeutics against this pathogen.


Assuntos
Coxiella burnetii , Febre Q , Animais , Humanos , Peptidilprolil Isomerase/metabolismo , Proteínas de Bactérias/metabolismo , Peróxido de Hidrogênio/metabolismo , Bactérias/metabolismo , Macrófagos/metabolismo
2.
Nucleic Acids Res ; 51(15): 8237-8254, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37378428

RESUMO

Specificity in protein-DNA recognition arises from the synergy of several factors that stem from the structural and chemical signatures encoded within the targeted DNA molecule. Here, we deciphered the nature of the interactions driving DNA recognition and binding by the bacterial transcription factor PdxR, a member of the MocR family responsible for the regulation of pyridoxal 5'-phosphate (PLP) biosynthesis. Single particle cryo-EM performed on the PLP-PdxR bound to its target DNA enabled the isolation of three conformers of the complex, which may be considered as snapshots of the binding process. Moreover, the resolution of an apo-PdxR crystallographic structure provided a detailed description of the transition of the effector domain to the holo-PdxR form triggered by the binding of the PLP effector molecule. Binding analyses of mutated DNA sequences using both wild type and PdxR variants revealed a central role of electrostatic interactions and of the intrinsic asymmetric bending of the DNA in allosterically guiding the holo-PdxR-DNA recognition process, from the first encounter through the fully bound state. Our results detail the structure and dynamics of the PdxR-DNA complex, clarifying the mechanism governing the DNA-binding mode of the holo-PdxR and the regulation features of the MocR family of transcription factors.


Assuntos
Proteínas de Bactérias , Fatores de Transcrição , Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Ligação Proteica , Fosfato de Piridoxal/metabolismo , Fatores de Transcrição/metabolismo , Bacillus clausii/genética
3.
J Biol Chem ; 299(4): 103033, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36806680

RESUMO

N-acetyl-d-glucosamine (GlcNAc) is a major component of bacterial cell walls. Many organisms recycle GlcNAc from the cell wall or metabolize environmental GlcNAc. The first step in GlcNAc metabolism is phosphorylation to GlcNAc-6-phosphate. In bacteria, the ROK family kinase N-acetylglucosamine kinase (NagK) performs this activity. Although ROK kinases have been studied extensively, no ternary complex showing the two substrates has yet been observed. Here, we solved the structure of NagK from the human pathogen Plesiomonas shigelloides in complex with GlcNAc and the ATP analog AMP-PNP. Surprisingly, PsNagK showed distinct conformational changes associated with the binding of each substrate. Consistent with this, the enzyme showed a sequential random enzyme mechanism. This indicates that the enzyme acts as a coordinated unit responding to each interaction. Our molecular dynamics modeling of catalytic ion binding confirmed the location of the essential catalytic metal. Additionally, site-directed mutagenesis confirmed the catalytic base and that the metal-coordinating residue is essential. Together, this study provides the most comprehensive insight into the activity of a ROK kinase.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool) , Plesiomonas , Humanos , Acetilglucosamina/metabolismo , Glucosamina , Metais , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Quinases Associadas a rho , Plesiomonas/enzimologia
4.
J Biol Chem ; 298(5): 101903, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398092

RESUMO

The sugars streptose and dihydrohydroxystreptose (DHHS) are unique to the bacteria Streptomyces griseus and Coxiella burnetii, respectively. Streptose forms the central moiety of the antibiotic streptomycin, while DHHS is found in the O-antigen of the zoonotic pathogen C. burnetii. Biosynthesis of these sugars has been proposed to follow a similar path to that of TDP-rhamnose, catalyzed by the enzymes RmlA, RmlB, RmlC, and RmlD, but the exact mechanism is unclear. Streptose and DHHS biosynthesis unusually requires a ring contraction step that could be performed by orthologs of RmlC or RmlD. Genome sequencing of S. griseus and C. burnetii has identified StrM and CBU1838 proteins as RmlC orthologs in these respective species. Here, we demonstrate that both enzymes can perform the RmlC 3'',5'' double epimerization activity necessary to support TDP-rhamnose biosynthesis in vivo. This is consistent with the ring contraction step being performed on a double epimerized substrate. We further demonstrate that proton exchange is faster at the 3''-position than the 5''-position, in contrast to a previously studied ortholog. We additionally solved the crystal structures of CBU1838 and StrM in complex with TDP and show that they form an active site highly similar to those of the previously characterized enzymes RmlC, EvaD, and ChmJ. These results support the hypothesis that streptose and DHHS are biosynthesized using the TDP pathway and that an RmlD paralog most likely performs ring contraction following double epimerization. This work will support the elucidation of the full pathways for biosynthesis of these unique sugars.


Assuntos
Antígenos de Bactérias/biossíntese , Carboidratos Epimerases , Coxiella burnetii/enzimologia , Streptomyces griseus/enzimologia , Carboidratos Epimerases/genética , Açúcares de Nucleosídeo Difosfato/biossíntese , Nucleotídeos de Timina/biossíntese
5.
J Antimicrob Chemother ; 77(6): 1625-1634, 2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35245364

RESUMO

BACKGROUND: The macrophage infectivity potentiator (Mip) protein, which belongs to the immunophilin superfamily, is a peptidyl-prolyl cis/trans isomerase (PPIase) enzyme. Mip has been shown to be important for virulence in a wide range of pathogenic microorganisms. It has previously been demonstrated that small-molecule compounds designed to target Mip from the Gram-negative bacterium Burkholderia pseudomallei bind at the site of enzymatic activity of the protein, inhibiting the in vitro activity of Mip. OBJECTIVES: In this study, co-crystallography experiments with recombinant B. pseudomallei Mip (BpMip) protein and Mip inhibitors, biochemical analysis and computational modelling were used to predict the efficacy of lead compounds for broad-spectrum activity against other pathogens. METHODS: Binding activity of three lead compounds targeting BpMip was verified using surface plasmon resonance spectroscopy. The determination of crystal structures of BpMip in complex with these compounds, together with molecular modelling and in vitro assays, was used to determine whether the compounds have broad-spectrum antimicrobial activity against pathogens. RESULTS: Of the three lead small-molecule compounds, two were effective in inhibiting the PPIase activity of Mip proteins from Neisseria meningitidis, Klebsiella pneumoniae and Leishmania major. The compounds also reduced the intracellular burden of these pathogens using in vitro cell infection assays. CONCLUSIONS: These results indicate that Mip is a novel antivirulence target that can be inhibited using small-molecule compounds that prove to be promising broad-spectrum drug candidates in vitro. Further optimization of compounds is required for in vivo evaluation and future clinical applications.


Assuntos
Proteínas de Bactérias , Bactérias Gram-Negativas , Leishmania major , Peptidilprolil Isomerase , Proteínas de Protozoários , Proteínas de Bactérias/antagonistas & inibidores , Bactérias Gram-Negativas/efeitos dos fármacos , Leishmania major/efeitos dos fármacos , Macrófagos/metabolismo , Neisseria meningitidis , Peptidilprolil Isomerase/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Proteínas Recombinantes
6.
J Biol Chem ; 294(43): 15850-15861, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31420448

RESUMO

Clostridioides difficile is the primary cause of antibiotic-associated diarrhea and colitis, a healthcare-associated intestinal disease resulting in a significant fatality rate. Colonization of the gut is critical for C. difficile pathogenesis. The bacterial molecules essential for efficient colonization therefore offer great potential as vaccine candidates. Here we present findings demonstrating that the C. difficile immunogenic lipoprotein CD0873 plays a critical role in pathogen success in vivo We found that in a dixenic colonization model, a CD0873-positive strain of C. difficile significantly outcompeted a CD0873-negative strain. Immunization of mice with recombinant CD0873 prevented long-term gut colonization and was correlated with a strong secretory IgA immune response. We further present high-resolution crystal structures of CD0873, at 1.35-2.50 Å resolutions, offering a first view of the ligand-binding pocket of CD0873 and provide evidence that this lipoprotein adhesin is part of a tyrosine import system, an amino acid key in C. difficile infection. These findings suggest that CD0873 could serve as an effective component in a vaccine against C. difficile.


Assuntos
Vacinas Bacterianas/imunologia , Clostridioides difficile/imunologia , Infecções por Clostridium/imunologia , Infecções por Clostridium/microbiologia , Lipoproteínas/genética , Lipoproteínas/imunologia , Animais , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Feminino , Humanos , Imunização , Imunoglobulina A Secretora/metabolismo , Intestinos/microbiologia , Intestinos/patologia , Ligantes , Lipoproteínas/química , Camundongos Endogâmicos C57BL , Mutação/genética , Proteínas Recombinantes/imunologia
7.
J Biol Chem ; 293(50): 19429-19440, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30337369

RESUMO

Toxin-antitoxin (TA) systems are present in many bacteria and play important roles in bacterial growth, physiology, and pathogenicity. Those that are best studied are the type II TA systems, in which both toxins and antitoxins are proteins. The HicAB system is one of the prototypic TA systems, found in many bacterial species. Complex interactions between the protein toxin (HicA), the protein antitoxin (HicB), and the DNA upstream of the encoding genes regulate the activity of this system, but few structural details are available about how HicA destabilizes the HicB-DNA complex. Here, we determined the X-ray structures of HicB and the HicAB complex to 1.8 and 2.5 Å resolution, respectively, and characterized their DNA interactions. This revealed that HicB forms a tetramer and HicA and HicB form a heterooctameric complex that involves structural reorganization of the C-terminal (DNA-binding) region of HicB. Our observations indicated that HicA has a profound impact on binding of HicB to DNA sequences upstream of hicAB in a stoichiometric-dependent way. At low ratios of HicA:HicB, there was no effect on DNA binding, but at higher ratios, the affinity for DNA declined cooperatively, driving dissociation of the HicA:HicB:DNA complex. These results reveal the structural mechanisms by which HicA de-represses the HicB-DNA complex.


Assuntos
Antitoxinas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo , Antitoxinas/química , Proteínas de Bactérias/genética , Burkholderia pseudomallei , Modelos Moleculares , Óperon/genética , Ligação Proteica , Conformação Proteica , Toxinas Biológicas/genética
8.
Fungal Genet Biol ; 109: 53-55, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29107012

RESUMO

In ascomycete fungi, hyphal cells are separated by perforate septa, which allow cell-to-cell communication. To protect against extensive wound-induced damage, septal pores are sealed by peroxisome-derived Woronin bodies (WBs). The mechanism underpinning WB movement is unknown, but cytoplasmic bulk flow may "flush" WBs into the pore. However, some studies suggest a controlled and active mechanism of WB movement. Indeed, in the wheat pathogen Zymoseptoria tritici cellular ATP prevents WBs from pore sealing in unwounded cells. Thus, cells appear to exert active control over WB closure. Here, we summarize our current understanding of WB-based pore sealing in ascomycete fungi.


Assuntos
Ascomicetos/fisiologia , Proteínas Fúngicas/fisiologia , Ascomicetos/ultraestrutura , Hifas/fisiologia
9.
Anal Biochem ; 536: 59-68, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28803887

RESUMO

Prolyl-peptidyl isomerases (PPIases) are enzymes that are found in all living organisms. They form an essential part of the cellular protein folding homeostasis machinery. PPIases are associated with many important human diseases, e.g. cardiovascular disease, cancer and Alzheimer's. The development of novel PPIase inhibitors has been limited by the lack of a rapid, laboratory-based assay for these enzymes, as their substrates and products are challenging to distinguish. A well described continuous assay, coupled with the hydrolysis of a peptide by chymotrypsin is highly effective, but comparatively slow. To address this, we developed an improved version of the traditional assay using a temperature controlled plate reader. This assay allows semi-automated medium throughput assays in an academic laboratory for 84 samples per day. The assay shows lower errors, with an average Z' of 0.72. We further developed the assay using a fluorogenic peptide-based FRET probe. This provides an extremely sensitive PPIase assay using substrate at 200 nM, which approaches single turnover conditions. The fluorescent probe achieves an excellent quenching efficiency of 98.6%, and initial experiments showed acceptable Z' of 0.31 and 0.30 for cyclophilin A and hFKBP12 respectively. The assays provide an improved toolset for the quantitative, biochemical analysis of PPIases.


Assuntos
Ensaios Enzimáticos/métodos , Peptidilprolil Isomerase/análise , Peptidilprolil Isomerase/metabolismo , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Conformação Molecular , Especificidade por Substrato , Temperatura
10.
Bioorg Med Chem ; 25(12): 3182-3194, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28462843

RESUMO

Non-substrate-like inhibitors of glycosyltransferases are sought after as chemical tools and potential lead compounds for medicinal chemistry, chemical biology and drug discovery. Here, we describe the discovery of a novel small molecular inhibitor chemotype for LgtC, a retaining α-1,4-galactosyltransferase involved in bacterial lipooligosaccharide biosynthesis. The new inhibitors, which are structurally unrelated to both the donor and acceptor of LgtC, have low micromolar inhibitory activity, comparable to the best substrate-based inhibitors. We provide experimental evidence that these inhibitors react covalently with LgtC. Results from detailed enzymological experiments with wild-type and mutant LgtC suggest the non-catalytic active site residue Cys246 as a likely target residue for these inhibitors. Analysis of available sequence and structural data reveals that non-catalytic cysteines are a common motif in the active site of many bacterial glycosyltransferases. Our results can therefore serve as a blueprint for the rational design of non-substrate-like, covalent inhibitors against a broad range of other bacterial glycosyltransferases.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glicosiltransferases/antagonistas & inibidores , Neisseria meningitidis/enzimologia , Pasteurella multocida/enzimologia , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico/efeitos dos fármacos , Bovinos , Descoberta de Drogas , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Humanos , Meningite Meningocócica/tratamento farmacológico , Meningite Meningocócica/microbiologia , Simulação de Acoplamento Molecular , Neisseria meningitidis/química , Infecções por Pasteurella/tratamento farmacológico , Infecções por Pasteurella/microbiologia , Pasteurella multocida/química
11.
EMBO J ; 31(1): 214-27, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22027862

RESUMO

Plant infection by pathogenic fungi requires polarized secretion of enzymes, but little is known about the delivery pathways. Here, we investigate the secretion of cell wall-forming chitin synthases (CHSs) in the corn pathogen Ustilago maydis. We show that peripheral filamentous actin (F-actin) and central microtubules (MTs) form independent tracks for CHSs delivery and both cooperate in cell morphogenesis. The enzyme Mcs1, a CHS that contains a myosin-17 motor domain, is travelling along both MTs and F-actin. This transport is independent of kinesin-3, but mediated by kinesin-1 and myosin-5. Arriving vesicles pause beneath the plasma membrane, but only ~15% of them get exocytosed and the majority is returned to the cell centre by the motor dynein. Successful exocytosis at the cell tip and, to a lesser extent at the lateral parts of the cell requires the motor domain of Mcs1, which captures and tethers the vesicles prior to secretion. Consistently, Mcs1-bound vesicles transiently bind F-actin but show no motility in vitro. Thus, kinesin-1, myosin-5 and dynein mediate bi-directional motility, whereas myosin-17 introduces a symmetry break that allows polarized secretion.


Assuntos
Quitina Sintase/metabolismo , Proteínas Fúngicas/metabolismo , Cinesinas/metabolismo , Miosinas/metabolismo , Ustilago/enzimologia , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Ustilago/metabolismo
12.
Bioorg Med Chem ; 24(21): 5134-5147, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27591009

RESUMO

The bacteria Burkholderia pseudomallei and Legionella pneumophila cause severe diseases like melioidosis and Legionnaire's disease with high mortality rates despite antibiotic treatment. Due to increasing antibiotic resistances against these and other Gram-negative bacteria, alternative therapeutical strategies are in urgent demand. As a virulence factor, the macrophage infectivity potentiator (Mip) protein constitutes an attractive target. The Mip proteins of B. pseudomallei and L. pneumophila exhibit peptidyl-prolyl cis/trans isomerase (PPIase) activity and belong to the PPIase superfamily. In previous studies, the pipecolic acid moiety proved to be a valuable scaffold for inhibiting this PPIase activity. Thus, a library of pipecolic acid derivatives was established guided by structural information and computational analyses of the binding site and possible binding modes. Stability and toxicity considerations were taken into account in iterative extensions of the library. Synthesis and evaluation of the compounds in PPIase assays resulted in highly active inhibitors. The activities can be interpreted in terms of a common binding mode obtained by docking calculations.


Assuntos
Burkholderia pseudomallei/enzimologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Legionella pneumophila/enzimologia , Peptidilprolil Isomerase/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Peptidilprolil Isomerase/metabolismo , Relação Estrutura-Atividade
13.
Antimicrob Agents Chemother ; 58(3): 1458-67, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24366729

RESUMO

Macrophage infectivity potentiators (Mips) are immunophilin proteins and essential virulence factors for a range of pathogenic organisms. We applied a structural biology approach to characterize a Mip from Burkholderia pseudomallei (BpML1), the causative agent of melioidosis. Crystal structure and nuclear magnetic resonance analyses of BpML1 in complex with known macrocyclics and other derivatives led to the identification of a key chemical scaffold. This scaffold possesses inhibitory potency for BpML1 without the immunosuppressive components of related macrocyclic agents. Biophysical characterization of a compound series with this scaffold allowed binding site specificity in solution and potency determinations for rank ordering the set. The best compounds in this series possessed a low-micromolar affinity for BpML1, bound at the site of enzymatic activity, and inhibited a panel of homologous Mip proteins from other pathogenic bacteria, without demonstrating toxicity in human macrophages. Importantly, the in vitro activity of BpML1 was reduced by these compounds, leading to decreased macrophage infectivity and intracellular growth of Burkholderia pseudomallei. These compounds offer the potential for activity against a new class of antimicrobial targets and present the utility of a structure-based approach for novel antimicrobial drug discovery.


Assuntos
Anti-Infecciosos/farmacologia , Proteínas de Bactérias/efeitos dos fármacos , Burkholderia pseudomallei/efeitos dos fármacos , Descoberta de Drogas/métodos , Imunofilinas/efeitos dos fármacos , Anti-Infecciosos/uso terapêutico , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação , Cristalografia por Raios X , Imunofilinas/ultraestrutura , Ressonância Magnética Nuclear Biomolecular , Fatores de Virulência
14.
Front Cell Infect Microbiol ; 14: 1353682, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590438

RESUMO

Introduction: Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a disease endemic in many tropical countries globally. Clinical presentation is highly variable, ranging from asymptomatic to fatal septicemia, and thus the outcome of infection can depend on the host immune responses. The aims of this study were to firstly, characterize the macrophage immune response to B. pseudomallei and secondly, to determine whether the immune response was modified in the presence of novel inhibitors targeting the virulence factor, the macrophage infectivity potentiator (Mip) protein. We hypothesized that inhibition of Mip in B. pseudomallei would disarm the bacteria and result in a host beneficial immune response. Methods: Murine macrophage J774A.1 cells were infected with B. pseudomallei K96243 in the presence of small-molecule inhibitors targeting the Mip protein. RNA-sequencing was performed on infected cells four hours post-infection. Secreted cytokines and lactose dehydrogenase were measured in cell culture supernatants 24 hours post-infection. Viable, intracellular B. pseudomallei in macrophages were also enumerated 24 hours post-infection. Results: Global transcriptional profiling of macrophages infected with B. pseudomallei by RNA-seq demonstrated upregulation of immune-associated genes, in particular a significant enrichment of genes in the TNF signaling pathway. Treatment of B. pseudomallei-infected macrophages with the Mip inhibitor, AN_CH_37 resulted in a 5.3-fold reduction of il1b when compared to cells treated with DMSO, which the inhibitors were solubilized in. A statistically significant reduction in IL-1ß levels in culture supernatants was seen 24 hours post-infection with AN_CH_37, as well as other pro-inflammatory cytokines, namely IL-6 and TNF-α. Treatment with AN_CH_37 also reduced the survival of B. pseudomallei in macrophages after 24 hours which was accompanied by a significant reduction in B. pseudomallei-induced cytotoxicity as determined by lactate dehydrogenase release. Discussion: These data highlight the potential to utilize Mip inhibitors in reducing potentially harmful pro-inflammatory responses resulting from B. pseudomallei infection in macrophages. This could be of significance since overstimulation of pro-inflammatory responses can result in immunopathology, tissue damage and septic shock.


Assuntos
Burkholderia pseudomallei , Melioidose , Animais , Camundongos , Burkholderia pseudomallei/metabolismo , Melioidose/microbiologia , Macrófagos/microbiologia , Citocinas/metabolismo , Transdução de Sinais
15.
SLAS Discov ; 28(5): 211-222, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37001588

RESUMO

The macrophage infectivity potentiator (Mip) protein belongs to the immunophilin superfamily. This class of enzymes catalyzes the interconversion between the cis and trans configuration of proline-containing peptide bonds. Mip has been shown to be important for the virulence of a wide range of pathogenic microorganisms, including the Gram-negative bacterium Burkholderia pseudomallei. Small molecules derived from the natural product rapamycin, lacking its immunosuppression-inducing moiety, inhibit Mip's peptidyl-prolyl cis-trans isomerase (PPIase) activity and lead to a reduction in pathogen load in vitro. Here, a fluorescence polarization assay (FPA) to enable the screening and effective development of BpMip inhibitors was established. A fluorescent probe was prepared, derived from previous pipecolic scaffold Mip inhibitors labeled with fluorescein. This probe showed moderate affinity for BpMip and enabled a highly robust FPA suitable for screening large compound libraries with medium- to high-throughput (Z factor ∼ 0.89) to identify potent new inhibitors. The FPA results are consistent with data from the protease-coupled PPIase assay. Analysis of the temperature dependence of the probe's binding highlighted that BpMip's ligand binding is driven by enthalpic rather than entropic effects. This has considerable consequences for the use of low-temperature kinetic assays.


Assuntos
Proteínas de Bactérias , Burkholderia pseudomallei , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/metabolismo , Corantes Fluorescentes/metabolismo , Peptidilprolil Isomerase/metabolismo , Macrófagos/metabolismo
16.
Front Microbiol ; 14: 1267570, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045033

RESUMO

The enzyme cyclic di-phosphoglycerate synthetase that is involved in the production of the osmolyte cyclic 2,3-diphosphoglycerate has been studied both biochemically and structurally. Cyclic 2,3-diphosphoglycerate is found exclusively in the hyperthermophilic archaeal methanogens, such as Methanothermus fervidus, Methanopyrus kandleri, and Methanothermobacter thermoautotrophicus. Its presence increases the thermostability of archaeal proteins and protects the DNA against oxidative damage caused by hydroxyl radicals. The cyclic 2,3-diphosphoglycerate synthetase enzyme has been crystallized and its structure solved to 1.7 Šresolution by experimental phasing. It has also been crystallized in complex with its substrate 2,3 diphosphoglycerate and the co-factor ADP and this structure has been solved to 2.2 Šresolution. The enzyme structure has two domains, the core domain shares some structural similarity with other NTP-dependent enzymes. A significant proportion of the structure, including a 127 amino acid N-terminal domain, has no structural similarity to other known enzyme structures. The structure of the complex shows a large conformational change that occurs in the enzyme during catalytic turnover. The reaction involves the transfer of the γ-phosphate group from ATP to the substrate 2,3 -diphosphoglycerate and the subsequent SN2 attack to form a phosphoanhydride. This results in the production of the unusual extremolyte cyclic 2,3 -diphosphoglycerate which has important industrial applications.

17.
Biofilm ; 5: 100131, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37252226

RESUMO

Biofilms are highly tolerant to antimicrobials and host immune defense, enabling pathogens to thrive in hostile environments. The diversity of microbial biofilm infections requires alternative and complex treatment strategies. In a previous work we demonstrated that the human Atrial Natriuretic Peptide (hANP) displays a strong anti-biofilm activity toward Pseudomonas aeruginosa and that the binding of hANP by the AmiC protein supports this effect. This AmiC sensor has been identified as an analog of the human natriuretic peptide receptor subtype C (h-NPRC). In the present study, we evaluated the anti-biofilm activity of the h-NPRC agonist, osteocrin (OSTN), a hormone that displays a strong affinity for the AmiC sensor at least in vitro. Using molecular docking, we identified a pocket in the AmiC sensor that OSTN reproducibly docks into, suggesting that OSTN might possess an anti-biofilm activity as well as hANP. This hypothesis was validated since we observed that OSTN dispersed established biofilm of P. aeruginosa PA14 strain at the same concentrations as hANP. However, the OSTN dispersal effect is less marked than that observed for the hANP (-61% versus -73%). We demonstrated that the co-exposure of P. aeruginosa preformed biofilm to hANP and OSTN induced a biofilm dispersion with a similar effect to that observed with hANP alone suggesting a similar mechanism of action of these two peptides. This was confirmed by the observation that OSTN anti-biofilm activity requires the activation of the complex composed by the sensor AmiC and the regulator AmiR of the ami pathway. Using a panel of both P. aeruginosa laboratory reference strains and clinical isolates, we observed that the OSTN capacity to disperse established biofilms is highly variable from one strain to another. Taken together, these results show that similarly to the hANP hormone, OSTN has a strong potential to be used as a tool to disperse P. aeruginosa biofilms.

18.
Biochem J ; 437(3): 413-22, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21574961

RESUMO

Mips (macrophage infectivity potentiators) are a subset of immunophilins associated with virulence in a range of micro-organisms. These proteins possess peptidylprolyl isomerase activity and are inhibited by drugs including rapamycin and tacrolimus. We determined the structure of the Mip homologue [BpML1 (Burkholderia pseudomallei Mip-like protein 1)] from the human pathogen and biowarfare threat B. pseudomallei by NMR and X-ray crystallography. The crystal structure suggests that key catalytic residues in the BpML1 active site have unexpected conformational flexibility consistent with a role in catalysis. The structure further revealed BpML1 binding to a helical peptide, in a manner resembling the physiological interaction of human TGFßRI (transforming growth factor ß receptor I) with the human immunophilin FKBP12 (FK506-binding protein 12). Furthermore, the structure of BpML1 bound to the class inhibitor cycloheximide N-ethylethanoate showed that this inhibitor mimics such a helical peptide, in contrast with the extended prolyl-peptide mimicking shown by inhibitors such as tacrolimus. We suggest that Mips, and potentially other bacterial immunophilins, participate in protein-protein interactions in addition to their peptidylprolyl isomerase activity, and that some roles of Mip proteins in virulence are independent of their peptidylprolyl isomerase activity.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Imunofilinas/antagonistas & inibidores , Proteínas de Bactérias/genética , Burkholderia pseudomallei/patogenicidade , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Virulência
19.
Infect Immun ; 79(11): 4299-307, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21859853

RESUMO

Macrophage infectivity potentiators (Mips) are a group of virulence factors encoded by pathogenic bacteria such as Legionella, Chlamydia, and Neisseria species. Mips are part of the FK506-binding protein (FKBP) family, whose members typically exhibit peptidylprolyl cis-trans isomerase (PPIase) activity which is inhibitable by the immunosuppressants FK506 and rapamycin. Here we describe the identification and characterization of BPSS1823, a Mip-like protein in the intracellular pathogen Burkholderia pseudomallei. Recombinant BPSS1823 protein has rapamycin-inhibitable PPIase activity, indicating that it is a functional FKBP. A mutant strain generated by deletion of BPSS1823 in B. pseudomallei exhibited a reduced ability to survive within cells and significant attenuation in vivo, suggesting that BPSS1823 is important for B. pseudomallei virulence. In addition, pleiotropic effects were observed with a reduction in virulence mechanisms, including resistance to host killing mechanisms, swarming motility, and protease production.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/metabolismo , Burkholderia pseudomallei/patogenicidade , Peptidilprolil Isomerase/metabolismo , Sirolimo/farmacologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/antagonistas & inibidores , Regulação Bacteriana da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Dados de Sequência Molecular , Peptidilprolil Isomerase/antagonistas & inibidores , Conformação Proteica , Proteínas Recombinantes , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Virulência
20.
Microbiology (Reading) ; 157(Pt 9): 2629-2638, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21680634

RESUMO

Burkholderia pseudomallei is a facultative intracellular bacterial pathogen causing melioidosis, an often fatal infectious disease that is endemic in several tropical and subtropical areas around the world. We previously described a Ptk2 cell-based plaque assay screening system of B. pseudomallei transposon mutants that led to the identification of several novel virulence determinants. Using this approach we identified a mutant with reduced plaque formation in which the BPSL0918 gene was disrupted. BPSL0918 encodes a putative FK-506-binding protein (FKBP) representing a family of proteins that typically possess peptidyl-prolyl isomerase (PPIase) activity. A B. pseudomallei ΔBPSL0918 mutant showed a severely impaired ability to resist intracellular killing and to replicate within primary macrophages. Complementation of the mutant fully restored its ability to grow intracellularly. Moreover, B. pseudomallei ΔBPSL0918 was significantly attenuated in a murine model of infection. Structural modelling confirmed a modified FKBP fold of the BPSL0918-encoded protein but unlike virulence-associated FKBPs from other pathogenic bacteria, recombinant BPSL0918 protein did not possess PPIase activity in vitro. In accordance with this observation BPSL0918 exhibits several mutations in residues that have been proposed to mediate PPIase activity in other FKBPs. To our knowledge this B. pseudomallei FKBP represents the first example of this protein family which lacks PPIase activity but is important in intracellular infection of a bacterial pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/patogenicidade , Melioidose/microbiologia , Peptidilprolil Isomerase/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Burkholderia pseudomallei/efeitos dos fármacos , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/genética , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Conformação Proteica , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/genética , Virulência , beta-Lactamas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA