Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 175(3): 643-651.e14, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340039

RESUMO

The biophysical features of neurons shape information processing in the brain. Cortical neurons are larger in humans than in other species, but it is unclear how their size affects synaptic integration. Here, we perform direct electrical recordings from human dendrites and report enhanced electrical compartmentalization in layer 5 pyramidal neurons. Compared to rat dendrites, distal human dendrites provide limited excitation to the soma, even in the presence of dendritic spikes. Human somas also exhibit less bursting due to reduced recruitment of dendritic electrogenesis. Finally, we find that decreased ion channel densities result in higher input resistance and underlie the lower coupling of human dendrites. We conclude that the increased length of human neurons alters their input-output properties, which will impact cortical computation. VIDEO ABSTRACT.


Assuntos
Dendritos/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação , Adulto , Animais , Feminino , Humanos , Canais Iônicos/metabolismo , Masculino , Células Piramidais/citologia , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Potenciais Sinápticos
2.
Nature ; 612(7939): 323-327, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450984

RESUMO

Newly generated excitatory synapses in the mammalian cortex lack sufficient AMPA-type glutamate receptors to mediate neurotransmission, resulting in functionally silent synapses that require activity-dependent plasticity to mature. Silent synapses are abundant in early development, during which they mediate circuit formation and refinement, but they are thought to be scarce in adulthood1. However, adults retain a capacity for neural plasticity and flexible learning that suggests that the formation of new connections is still prevalent. Here we used super-resolution protein imaging to visualize synaptic proteins at 2,234 synapses from layer 5 pyramidal neurons in the primary visual cortex of adult mice. Unexpectedly, about 25% of these synapses lack AMPA receptors. These putative silent synapses were located at the tips of thin dendritic protrusions, known as filopodia, which were more abundant by an order of magnitude than previously believed (comprising about 30% of all dendritic protrusions). Physiological experiments revealed that filopodia do indeed lack AMPA-receptor-mediated transmission, but they exhibit NMDA-receptor-mediated synaptic transmission. We further showed that functionally silent synapses on filopodia can be unsilenced through Hebbian plasticity, recruiting new active connections into a neuron's input matrix. These results challenge the model that functional connectivity is largely fixed in the adult cortex and demonstrate a new mechanism for flexible control of synaptic wiring that expands the learning capabilities of the mature brain.


Assuntos
Mamíferos , Registros , Animais , Camundongos
3.
Nature ; 600(7888): 274-278, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34759318

RESUMO

The biophysical properties of neurons are the foundation for computation in the brain. Neuronal size is a key determinant of single neuron input-output features and varies substantially across species1-3. However, it is unknown whether different species adapt neuronal properties to conserve how single neurons process information4-7. Here we characterize layer 5 cortical pyramidal neurons across 10 mammalian species to identify the allometric relationships that govern how neuronal biophysics change with cell size. In 9 of the 10 species, we observe conserved rules that control the conductance of voltage-gated potassium and HCN channels. Species with larger neurons, and therefore a decreased surface-to-volume ratio, exhibit higher membrane ionic conductances. This relationship produces a conserved conductance per unit brain volume. These size-dependent rules result in large but predictable changes in somatic and dendritic integrative properties. Human neurons do not follow these allometric relationships, exhibiting much lower voltage-gated potassium and HCN conductances. Together, our results in layer 5 neurons identify conserved evolutionary principles for neuronal biophysics in mammals as well as notable features of the human cortex.


Assuntos
Biofísica , Tamanho Celular , Córtex Cerebral/citologia , Mamíferos , Células Piramidais/citologia , Células Piramidais/fisiologia , Animais , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Dendritos/fisiologia , Condutividade Elétrica , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Masculino , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Especificidade da Espécie
4.
Nature ; 549(7673): 482-487, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28902835

RESUMO

Viral infection during pregnancy is correlated with increased frequency of neurodevelopmental disorders, and this is studied in mice prenatally subjected to maternal immune activation (MIA). We previously showed that maternal T helper 17 cells promote the development of cortical and behavioural abnormalities in MIA-affected offspring. Here we show that cortical abnormalities are preferentially localized to a region encompassing the dysgranular zone of the primary somatosensory cortex (S1DZ). Moreover, activation of pyramidal neurons in this cortical region was sufficient to induce MIA-associated behavioural phenotypes in wild-type animals, whereas reduction in neural activity rescued the behavioural abnormalities in MIA-affected offspring. Sociability and repetitive behavioural phenotypes could be selectively modulated according to the efferent targets of S1DZ. Our work identifies a cortical region primarily, if not exclusively, centred on the S1DZ as the major node of a neural network that mediates behavioural abnormalities observed in offspring exposed to maternal inflammation.


Assuntos
Comportamento Animal , Inflamação/fisiopatologia , Transtornos Mentais/etiologia , Complicações Infecciosas na Gravidez/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Células Th17 , Animais , Feminino , Masculino , Transtornos Mentais/psicologia , Camundongos , Mães , Fenótipo , Gravidez , Células Piramidais/patologia , Células Piramidais/fisiologia , Comportamento Social , Córtex Somatossensorial/anormalidades , Córtex Somatossensorial/patologia , Córtex Somatossensorial/fisiopatologia , Células Th17/fisiologia
5.
Nature ; 491(7425): 599-602, 2012 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-23103868

RESUMO

Dendritic spines are the nearly ubiquitous site of excitatory synaptic input onto neurons and as such are critically positioned to influence diverse aspects of neuronal signalling. Decades of theoretical studies have proposed that spines may function as highly effective and modifiable chemical and electrical compartments that regulate synaptic efficacy, integration and plasticity. Experimental studies have confirmed activity-dependent structural dynamics and biochemical compartmentalization by spines. However, there is a longstanding debate over the influence of spines on the electrical aspects of synaptic transmission and dendritic operation. Here we measure the amplitude ratio of spine head to parent dendrite voltage across a range of dendritic compartments and calculate the associated spine neck resistance (R(neck)) for spines at apical trunk dendrites in rat hippocampal CA1 pyramidal neurons. We find that R(neck) is large enough (~500 MΩ) to amplify substantially the spine head depolarization associated with a unitary synaptic input by ~1.5- to ~45-fold, depending on parent dendritic impedance. A morphologically realistic compartmental model capable of reproducing the observed spatial profile of the amplitude ratio indicates that spines provide a consistently high-impedance input structure throughout the dendritic arborization. Finally, we demonstrate that the amplification produced by spines encourages electrical interaction among coactive inputs through an R(neck)-dependent increase in spine head voltage-gated conductance activation. We conclude that the electrical properties of spines promote nonlinear dendritic processing and associated forms of plasticity and storage, thus fundamentally enhancing the computational capabilities of neurons.


Assuntos
Espinhas Dendríticas/fisiologia , Células Piramidais/fisiologia , Sinapses/metabolismo , Animais , Impedância Elétrica , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Modelos Neurológicos , Ratos , Ratos Sprague-Dawley , Ratos Wistar
6.
Nature ; 492(7428): 247-51, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23143335

RESUMO

Active dendrites provide neurons with powerful processing capabilities. However, little is known about the role of neuronal dendrites in behaviourally related circuit computations. Here we report that a novel global dendritic nonlinearity is involved in the integration of sensory and motor information within layer 5 pyramidal neurons during an active sensing behaviour. Layer 5 pyramidal neurons possess elaborate dendritic arborizations that receive functionally distinct inputs, each targeted to spatially separate regions. At the cellular level, coincident input from these segregated pathways initiates regenerative dendritic electrical events that produce bursts of action potential output and circuits featuring this powerful dendritic nonlinearity can implement computations based on input correlation. To examine this in vivo we recorded dendritic activity in layer 5 pyramidal neurons in the barrel cortex using two-photon calcium imaging in mice performing an object-localization task. Large-amplitude, global calcium signals were observed throughout the apical tuft dendrites when active touch occurred at particular object locations or whisker angles. Such global calcium signals are produced by dendritic plateau potentials that require both vibrissal sensory input and primary motor cortex activity. These data provide direct evidence of nonlinear dendritic processing of correlated sensory and motor information in the mammalian neocortex during active sensation.


Assuntos
Comportamento Animal/fisiologia , Dendritos/fisiologia , Atividade Motora/fisiologia , Sensação/fisiologia , Animais , Cálcio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Células Piramidais/fisiologia , Transdução de Sinais
7.
J Neurosci ; 35(3): 1024-37, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25609619

RESUMO

The apical tuft is the most remote area of the dendritic tree of neocortical pyramidal neurons. Despite its distal location, the apical dendritic tuft of layer 5 pyramidal neurons receives substantial excitatory synaptic drive and actively processes corticocortical input during behavior. The properties of the voltage-activated ion channels that regulate synaptic integration in tuft dendrites have, however, not been thoroughly investigated. Here, we use electrophysiological and optical approaches to examine the subcellular distribution and function of hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels in rat layer 5B pyramidal neurons. Outside-out patch recordings demonstrated that the amplitude and properties of ensemble HCN channel activity were uniform in patches excised from distal apical dendritic trunk and tuft sites. Simultaneous apical dendritic tuft and trunk whole-cell current-clamp recordings revealed that the pharmacological blockade of HCN channels decreased voltage compartmentalization and enhanced the generation and spread of apical dendritic tuft and trunk regenerative activity. Furthermore, multisite two-photon glutamate uncaging demonstrated that HCN channels control the amplitude and duration of synaptically evoked regenerative activity in the distal apical dendritic tuft. In contrast, at proximal apical dendritic trunk and somatic recording sites, the blockade of HCN channels decreased excitability. Dynamic-clamp experiments revealed that these compartment-specific actions of HCN channels were heavily influenced by the local and distributed impact of the high density of HCN channels in the distal apical dendritic arbor. The properties and subcellular distribution pattern of HCN channels are therefore tuned to regulate the interaction between integration compartments in layer 5B pyramidal neurons.


Assuntos
Dendritos/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Neocórtex/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Neocórtex/citologia , Técnicas de Patch-Clamp , Células Piramidais/citologia , Ratos , Ratos Wistar , Sinapses/fisiologia
8.
Nat Methods ; 10(2): 162-70, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23314171

RESUMO

We describe an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) with signal-to-noise ratio and kinetics appropriate for in vivo imaging. We engineered iGluSnFR in vitro to maximize its fluorescence change, and we validated its utility for visualizing glutamate release by neurons and astrocytes in increasingly intact neurological systems. In hippocampal culture, iGluSnFR detected single field stimulus-evoked glutamate release events. In pyramidal neurons in acute brain slices, glutamate uncaging at single spines showed that iGluSnFR responds robustly and specifically to glutamate in situ, and responses correlate with voltage changes. In mouse retina, iGluSnFR-expressing neurons showed intact light-evoked excitatory currents, and the sensor revealed tonic glutamate signaling in response to light stimuli. In worms, glutamate signals preceded and predicted postsynaptic calcium transients. In zebrafish, iGluSnFR revealed spatial organization of direction-selective synaptic activity in the optic tectum. Finally, in mouse forelimb motor cortex, iGluSnFR expression in layer V pyramidal neurons revealed task-dependent single-spine activity during running.


Assuntos
Proteínas de Escherichia coli , Corantes Fluorescentes , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde , Proteínas Recombinantes de Fusão , Transmissão Sináptica/fisiologia , Animais , Astrócitos/metabolismo , Técnicas Biossensoriais , Caenorhabditis elegans , Sinalização do Cálcio/fisiologia , Proteínas de Escherichia coli/síntese química , Potenciais Pós-Sinápticos Excitadores/fisiologia , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/síntese química , Hipocampo/metabolismo , Camundongos , Córtex Motor/metabolismo , Neurônios/metabolismo , Estimulação Luminosa , Células Piramidais/metabolismo , Proteínas Recombinantes de Fusão/síntese química , Retina/fisiologia , Razão Sinal-Ruído , Peixe-Zebra
9.
Elife ; 132024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470232

RESUMO

The sense of direction is critical for survival in changing environments and relies on flexibly integrating self-motion signals with external sensory cues. While the anatomical substrates involved in head direction (HD) coding are well known, the mechanisms by which visual information updates HD representations remain poorly understood. Retrosplenial cortex (RSC) plays a key role in forming coherent representations of space in mammals and it encodes a variety of navigational variables, including HD. Here, we use simultaneous two-area tetrode recording to show that RSC HD representation is nearly synchronous with that of the anterodorsal nucleus of thalamus (ADn), the obligatory thalamic relay of HD to cortex, during rotation of a prominent visual cue. Moreover, coordination of HD representations in the two regions is maintained during darkness. We further show that anatomical and functional connectivity are consistent with a strong feedforward drive of HD information from ADn to RSC, with anatomically restricted corticothalamic feedback. Together, our results indicate a concerted global HD reference update across cortex and thalamus.


Assuntos
Núcleos Anteriores do Tálamo , Animais , Camundongos , Giro do Cíngulo , Córtex Cerebral , Sinais (Psicologia) , Rotação , Mamíferos
10.
bioRxiv ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993722

RESUMO

Recent developments in super-resolution microscopy have revolutionized the study of cell biology. However, dense tissues require exogenous protein expression for single cell morphological contrast. In the nervous system, many cell types and species of interest - particularly human - are not amenable to genetic modification and/or exhibit intricate anatomical specializations which make cellular delineation challenging. Here, we present a method for full morphological labeling of individual neurons from any species or cell type for subsequent cell-resolved protein analysis without genetic modification. Our method, which combines patch-clamp electrophysiology with epitope-preserving magnified analysis of proteome (eMAP), further allows for correlation of physiological properties with subcellular protein expression. We applied Patch2MAP to individual spiny synapses in human cortical pyramidal neurons and demonstrated that electrophysiological AMPA-to-NMDA receptor ratios correspond tightly to respective protein expression levels. Patch2MAP thus permits combined subcellular functional, anatomical, and proteomic analyses of any cell, opening new avenues for direct molecular investigation of the human brain in health and disease.

11.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693443

RESUMO

Behavioral neuroscience faces two conflicting demands: long-duration recordings from large neural populations and unimpeded animal behavior. To meet this challenge, we developed ONIX, an open-source data acquisition system with high data throughput (2GB/sec) and low closed-loop latencies (<1ms) that uses a novel 0.3 mm thin tether to minimize behavioral impact. Head position and rotation are tracked in 3D and used to drive active commutation without torque measurements. ONIX can acquire from combinations of passive electrodes, Neuropixels probes, head-mounted microscopes, cameras, 3D-trackers, and other data sources. We used ONIX to perform uninterrupted, long (~7 hours) neural recordings in mice as they traversed complex 3-dimensional terrain. ONIX allowed exploration with similar mobility as non-implanted animals, in contrast to conventional tethered systems which restricted movement. By combining long recordings with full mobility, our technology will enable new progress on questions that require high-quality neural recordings during ethologically grounded behaviors.

12.
J Clin Invest ; 133(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36602876

RESUMO

Cortical neural dynamics mediate information processing for the cerebral cortex, which is implicated in fundamental biological processes such as vision and olfaction, in addition to neurological and psychiatric diseases. Spontaneous pain is a key feature of human neuropathic pain. Whether spontaneous pain pushes the cortical network into an aberrant state and, if so, whether it can be brought back to a "normal" operating range to ameliorate pain are unknown. Using a clinically relevant mouse model of neuropathic pain with spontaneous pain-like behavior, we report that orofacial spontaneous pain activated a specific area within the primary somatosensory cortex (S1), displaying synchronized neural dynamics revealed by intravital two-photon calcium imaging. This synchronization was underpinned by local GABAergic interneuron hypoactivity. Pain-induced cortical synchronization could be attenuated by manipulating local S1 networks or clinically effective pain therapies. Specifically, both chemogenetic inhibition of pain-related c-Fos-expressing neurons and selective activation of GABAergic interneurons significantly attenuated S1 synchronization. Clinically effective pain therapies including carbamazepine and nerve root decompression could also dampen S1 synchronization. More important, restoring a "normal" range of neural dynamics through attenuation of pain-induced S1 synchronization alleviated pain-like behavior. These results suggest that spontaneous pain pushed the S1 regional network into a synchronized state, whereas reversal of this synchronization alleviated pain.


Assuntos
Córtex Cerebral , Neuralgia , Animais , Camundongos , Interneurônios/fisiologia , Neuralgia/genética , Neuralgia/terapia , Neurônios , Córtex Somatossensorial
13.
Neuroscience ; 489: 185-199, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34116137

RESUMO

Decades of experimental and theoretical work support a now well-established theory that active dendritic processing contributes to the computational power of individual neurons. This theory is based on the high degree of electrical compartmentalization observed in the dendrites of single neurons in ex vivo preparations. Compartmentalization allows dendrites to conduct semi-independent operations on their inputs before final integration and output at the axon, producing a "network-in-a-neuron." However, recent in vivo functional imaging experiments in mouse cortex have reported surprisingly little evidence for strong dendritic compartmentalization. In this review, we contextualize these new findings and discuss their impact on the future of the field. Specifically, we consider how highly coordinated, and thus less compartmentalized, activity in soma and dendrites can contribute to cortical computations including nonlinear mixed selectivity, prediction/expectation, multiplexing, and credit assignment.


Assuntos
Dendritos , Células Piramidais , Potenciais de Ação/fisiologia , Animais , Dendritos/fisiologia , Camundongos , Neurônios/fisiologia , Células Piramidais/fisiologia
14.
Neuron ; 110(9): 1532-1546.e4, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35180389

RESUMO

Synaptic NMDA receptors can produce powerful dendritic supralinearities that expand the computational repertoire of single neurons and their respective circuits. This form of supralinearity may represent a general principle for synaptic integration in thin dendrites. However, individual cortical neurons receive many diverse classes of input that may require distinct postsynaptic decoding schemes. Here, we show that sensory, motor, and thalamic inputs preferentially target basal, apical oblique, and distal tuft dendrites, respectively, in layer 5b pyramidal neurons of the mouse retrosplenial cortex, a visuospatial association area. These dendritic compartments exhibited differential expression of NMDA receptor-mediated supralinearity due to systematic changes in the AMPA-to-NMDA receptor ratio. Our results reveal a new schema for integration in cortical pyramidal neurons, in which dendrite-specific changes in synaptic receptors support input-localized decoding. This coexistence of multiple modes of dendritic integration in single neurons has important implications for synaptic plasticity and cortical computation.


Assuntos
Células Piramidais , Receptores de N-Metil-D-Aspartato , Animais , Córtex Cerebral/fisiologia , Dendritos/fisiologia , Camundongos , Células Piramidais/fisiologia , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
15.
J Neurosci ; 30(19): 6689-99, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20463231

RESUMO

Synaptic plasticity in the mesolimbic dopamine (DA) system is critically involved in reward-based conditioning and the development of drug addiction. Ca2+ signals triggered by postsynaptic action potentials (APs) drive the induction of synaptic plasticity in the CNS. However, it is not clear how AP-evoked Ca2+ signals and the resulting synaptic plasticity are altered during in vivo exposure to drugs of abuse. We have recently described long-term potentiation (LTP) of NMDA receptor (NMDAR)-mediated transmission onto DA neurons that is induced in a manner dependent on bursts of APs. LTP induction requires amplification of burst-evoked Ca2+ signals by preceding activation of metabotropic glutamate receptors (mGluRs) generating inositol 1,4,5-trisphosphate (IP3). In this study, using brain slices prepared from male rats, we show that repeated in vivo exposure to the psychostimulant amphetamine (5 mg/kg, i.p., 3-7 d) upregulates mGluR-dependent facilitation of burst-evoked Ca2+ signals in DA neurons of the ventral tegmental area (VTA). Protein kinase A (PKA)-induced sensitization of IP3 receptors mediates this upregulation of mGluR action. As a consequence, NMDAR-mediated transmission becomes more susceptible to LTP induction after repeated amphetamine exposure. We have also found that the magnitude of amphetamine-conditioned place preference (CPP) in behaving rats correlates with the magnitude of mGluR-dependent Ca2+ signal facilitation measured in VTA slices prepared from these rats. Furthermore, the development of amphetamine CPP is significantly attenuated by intra-VTA infusion of the PKA inhibitor H89. We propose that enhancement of mGluR-dependent NMDAR plasticity in the VTA may promote the learning of environmental stimuli repeatedly associated with amphetamine experience.


Assuntos
Anfetamina/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Cálcio/metabolismo , Condicionamento Clássico/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dopamina/metabolismo , Técnicas In Vitro , Isoquinolinas/farmacologia , Potenciação de Longa Duração/fisiologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Percepção Espacial/efeitos dos fármacos , Sulfonamidas/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Área Tegmentar Ventral/fisiologia
16.
Neuron ; 105(2): 237-245.e4, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31759808

RESUMO

Active amplification of organized synaptic inputs in dendrites can endow individual neurons with the ability to perform complex computations. However, whether dendrites in behaving animals perform independent local computations is not known. Such activity may be particularly important for complex behavior, where neurons integrate multiple streams of information. Head-restrained imaging has yielded important insights into cellular and circuit function, but this approach limits behavior and the underlying computations. We describe a method for full-featured 2-photon imaging in awake mice during free locomotion with volitional head rotation. We examine head direction and position encoding in simultaneously imaged apical tuft dendrites and their respective cell bodies in retrosplenial cortex, an area that encodes multi-modal navigational information. Activity in dendrites was not determined solely by somatic activity but reflected distinct navigational variables, fulfilling the requirements for dendritic computation. Our approach provides a foundation for studying sub-cellular processes during complex behaviors.


Assuntos
Corpo Celular/fisiologia , Córtex Cerebral/fisiologia , Dendritos/fisiologia , Neuroimagem/métodos , Fenômenos Ópticos , Navegação Espacial/fisiologia , Potenciais de Ação/fisiologia , Animais , Masculino , Camundongos
17.
Elife ; 92020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32154781

RESUMO

The process by which visual information is incorporated into the brain's spatial framework to represent landmarks is poorly understood. Studies in humans and rodents suggest that retrosplenial cortex (RSC) plays a key role in these computations. We developed an RSC-dependent behavioral task in which head-fixed mice learned the spatial relationship between visual landmark cues and hidden reward locations. Two-photon imaging revealed that these cues served as dominant reference points for most task-active neurons and anchored the spatial code in RSC. This encoding was more robust after task acquisition. Decoupling the virtual environment from mouse behavior degraded spatial representations and provided evidence that supralinear integration of visual and motor inputs contributes to landmark encoding. V1 axons recorded in RSC were less modulated by task engagement but showed surprisingly similar spatial tuning. Our data indicate that landmark representations in RSC are the result of local integration of visual, motor, and spatial information.


When moving through a city, people often use notable or familiar landmarks to help them navigate. Landmarks provide us with information about where we are and where we need to go next. But despite the ease with which we ­ and most other animals ­ use landmarks to find our way around, it remains unclear exactly how the brain makes this possible. One area that seems to have a key role is the retrosplenial cortex, which is located deep within the back of the brain in humans. This area becomes more active when animals use visual landmarks to navigate. It is also one of the first brain regions to be affected in Alzheimer's disease, which may help to explain why patients with this condition can become lost and disoriented, even in places they have been many times before. To find out how the retrosplenial cortex supports navigation, Fischer et al. measured its activity in mice exploring a virtual reality world. The mice ran through simulated corridors in which visual landmarks indicated where hidden rewards could be found. The activity of most neurons in the retrosplenial cortex was most strongly influenced by the mouse's position relative to the landmark; for example, some neurons were always active 10 centimeters after the landmark. In other experiments, when the landmarks were present but no longer indicated the location of a reward, the same neurons were much less active. Fischer et al. also measured the activity of the neurons when the mice were running with nothing shown on the virtual reality, and when they saw a landmark but did not run. Notably, the activity seen when the mice were using the landmarks to find rewards was greater than the sum of that recorded when the mice were just running or just seeing the landmark without a reward, making the "landmark response" an example of so-called supralinear processing. Fischer et al. showed that visual centers of the brain send information about landmarks to retrosplenial cortex. But only the latter adjusts its activity depending on whether the mouse is using that landmark to navigate. These findings provide the first evidence for a "landmark code" at the level of neurons and lay the foundations for studying impaired navigation in patients with Alzheimer's disease. By showing that retrosplenial cortex neurons combine different types of input in a supralinear fashion, the results also point to general principles for how neurons in the brain perform complex calculations.


Assuntos
Giro do Cíngulo/fisiologia , Processamento Espacial/fisiologia , Percepção Visual/fisiologia , Animais , Comportamento Animal , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
J Neural Eng ; 17(2): 026044, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32074511

RESUMO

Tetrode arrays are a standard method for neuronal recordings in behaving animals, especially for chronic recordings of many neurons in freely-moving animals. OBJECTIVE: We sought to simplify tetrode drive designs with the aim of enabling building and implanting a 16-tetrode drive in a single day. APPROACH: Our design makes use of recently developed technologies to reduce the complexity of the drive while maintaining a low weight. MAIN RESULTS: The design presents an improvement over existing implants in terms of robustness, weight, and ease of use. We describe two variants: a 16 tetrode implant weighing ∼2 g for mice, bats, tree shrews and similar animals, and a 64 tetrode implant weighing ∼16 g for rats and similar animals. These designs were co-developed and optimized alongside a new class of drive-mounted feature-rich amplifier boards with ultra-thin radio-frequency tethers, as described in an upcoming paper (Newman, Zhang et al in prep). SIGNIFICANCE: This design significantly improves the data yield of chronic electrophysiology experiments.


Assuntos
Neurônios , Próteses e Implantes , Animais , Fenômenos Eletrofisiológicos , Camundongos , Ratos
19.
J Neural Eng ; 17(2): 026040, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32074512

RESUMO

OBJECTIVE: Twisted wire probes (TWPs, e.g. stereotrodes and tetrodes) provide a cheap and reliable method for obtaining high quality, multiple single-unit neural recordings in freely moving animals. Despite their ubiquity, TWPs are constructed using a tedious procedure consisting of manually folding, turning, and fusing microwire. This imposes a significant labor burden on research personnel who use TWPs in their experiments. APPROACH: To address this issue, we created Twister3, an open-source microwire twisting machine. This machine features a quick-draw wire feeder that eliminates manual wire folding, an auto-aligning motor attachment mechanism which results in consistently straight probes, and a high speed motor for rapid probe turning. MAIN RESULTS: Twister3 greatly increases the speed and repeatability of constructing twisted microwire probes compared to existing options. Users with less than one hour of experience using the device were able to make ~70 tetrodes per hour, on average. It is cheap, well documented, and all associated designs and source code are open-source. SIGNIFICANCE: Twister3 significantly reduces the labor burden of creating high-quality TWPs so electrophysiologists can spend more of their time performing recordings rather than making probes. Therefore, this device is of interest to any lab performing TWP neural recordings, for example, using microdrives.


Assuntos
Eletrodos Implantados , Animais
20.
J Neurosci ; 28(46): 12062-70, 2008 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19005071

RESUMO

At excitatory synapses, decreases in cleft [Ca] arising from activity-dependent transmembrane Ca flux reduce the probability of subsequent transmitter release. Intense neural activity, induced by physiological and pathological stimuli, disturb the external microenvironment reducing extracellular [Ca] ([Ca](o)) and thus may impair neurotransmission. Increases in [Ca](o) activate the extracellular calcium sensing receptor (CaSR) which in turn inhibits nonselective cation channels at the majority of cortical nerve terminals. This pathway may modulate synaptic transmission by attenuating the impact of decreases in [Ca](o) on synaptic transmission. Using patch-clamp recording from isolated cortical terminals, cortical neuronal pairs and isolated neuronal soma we examined the modulation of synaptic transmission by CaSR. EPSCs were increased on average by 88% in reduced affinity CaSR-mutant (CaSR(-/-)) neurons compared with wild-type. Variance-mean analysis indicates that the enhanced synaptic transmission was due largely to an increase in average probability of release (0.27 vs 0.46 for wild-type vs CaSR(-/-) pairs) with little change in quantal size (23 +/- 4 pA vs 22 +/- 4 pA) or number of release sites (11 vs 13). In addition, the CaSR agonist spermidine reduced synaptic transmission and increased paired-pulse depression at physiological [Ca](o). Spermidine did not affect quantal size, consistent with a presynaptic mechanism of action, nor did it affect voltage-activated Ca channel currents. In summary, reduced CaSR function enhanced synaptic transmission and CaSR stimulation had the opposite effect. Thus CaSR provides a mechanism that may compensate for the fall in release probability that accompanies decreases in [Ca](o).


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Córtex Cerebral/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Transmissão Sináptica/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos , Camundongos Knockout , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/efeitos dos fármacos , Receptores de Detecção de Cálcio/efeitos dos fármacos , Espermidina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Sinaptossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA