Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Anat ; 240(4): 678-687, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34747020

RESUMO

Quantifying morphological variation is critical for conducting anatomical research. Three-dimensional geometric morphometric (3D GM) landmark analyses quantify shape using homologous Cartesian coordinates (landmarks). Setting up a high-density landmark set and placing it on all specimens, however, can be a time-consuming task. Weighted spherical harmonics (SPHARM) provides an alternative method for analyzing the shape of such objects. Here we compare sliding semilandmark and SPHARM analyses of the calcaneus of Gorilla gorilla gorilla (n = 20), Pan troglodytes troglodytes (n = 20), and Homo sapiens (n = 20) to determine whether the SPHARM and sliding semilandmark analyses capture comparable levels of shape variation. We also compare both the sliding semilandmark and SPHARM analyses to a novel combination of the two methods, here termed SPHARM-sliding. In SPHARM-sliding, the vertices of the surface models produced from the SPHARM analysis (that are the same in number and relative location) are used as the starting landmark positions for a sliding semilandmark analysis. Calcaneal shape variation quantified by all three analyses was summarized using separate principal components analyses. Results were compared using the root mean square (RMS) and maximum distance between surface models of species averages scaled (up) to centroid size created from each analysis. The average RMS was 0.23 mm between sliding semilandmark and SPHARM average surface models, 0.19 mm between SPHARM and SPHARM sliding average surface models, and 0.22 mm between sliding semilandmark and SPHARM sliding average surface models. Although results indicate that all three analyses are comparable methods for 3D shape analysis, there are advantages and disadvantages to each. While the SPHARM analysis is less time-intensive, it is unable to capture the same level of detail around the sharp edges of articular facets on average surface models as the sliding semilandmark analysis. The SPHARM analysis also does not allow for individual articular facets to be analyzed in isolation. SPHARM-sliding, however, captures the same level of detail as the sliding semilandmark analysis, and (as in the sliding semilandmark analysis) allows for the evaluation of individual portions of bone. SPHARM is a comparable method to a 3D GM analysis for small, irregularly shaped bones, such as the calcaneus, and SPHARM-sliding allows for an expedited set up process for a sliding semilandmark analysis.


Assuntos
Calcâneo , Gorilla gorilla , Animais , Calcâneo/anatomia & histologia , Humanos , Análise de Componente Principal
2.
J Anat ; 241(2): 500-517, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35373345

RESUMO

The Kromdraai site in South Africa has yielded numerous early hominin fossils since 1938. As a part of recent excavations within Unit P, a largely complete early hominin calcaneus (KW 6302) was discovered. Due to its role in locomotion, the calcaneus has the potential to reveal important form/function relationships. Here, we describe KW 6302 and analyze its preserved morphology relative to human and nonhuman ape calcanei, as well as calcanei attributed to Australopithecus afarensis, Australopithecus africanus, Australopithecus sediba, Homo naledi, and the Omo calcaneus (either Paranthropus or early Homo). KW 6302 calcaneal morphology is assessed using numerous quantitative metrics including linear measures, calcaneal robusticity index, relative lateral plantar process position, Achilles tendon length reconstruction, and a three-dimensional geometric morphometric sliding semilandmark analysis. KW 6302 exhibits an overall calcaneal morphology that is intermediate between humans and nonhuman apes, although closer to modern humans. KW 6302 possesses many traits that indicate it was likely well-adapted for terrestrial bipedal locomotion, including a relatively flat posterior talar facet and a large lateral plantar process that is similarly positioned to modern humans. It also retains traits that indicate that climbing may have remained a part of its locomotor repertoire, such as a relatively gracile tuber and a large peroneal trochlea. Specimens from Kromdraai have been attributed to either Paranthropus robustus or early Homo; however, there are no definitively attributed calcanei for either genus, making it difficult to taxonomically assign this specimen. KW 6302 and the Omo calcaneus, however, fall outside the range of expected variation for an extant genus, indicating that if the Omo calcaneus was Paranthropus, then KW 6302 would likely be attributed to early Homo (or vice versa).


Assuntos
Calcâneo , Hominidae , Animais , Evolução Biológica , Calcâneo/anatomia & histologia , Fósseis , Hominidae/anatomia & histologia , Humanos , África do Sul
3.
Proc Natl Acad Sci U S A ; 116(51): 25462-25467, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31772020

RESUMO

Physical forces have a profound effect on growth, morphology, locomotion, and survival of organisms. At the level of individual cells, the role of mechanical forces is well recognized in eukaryotic physiology, but much less is known about prokaryotic organisms. Recent findings suggest an effect of physical forces on bacterial shape, cell division, motility, virulence, and biofilm initiation, but it remains unclear how mechanical forces applied to a bacterium are translated at the molecular level. In Gram-negative bacteria, multicomponent protein complexes can form rigid links across the cell envelope and are therefore subject to physical forces experienced by the cell. Here we manipulate tensile and shear mechanical stress in the bacterial cell envelope and use single-molecule tracking to show that octahedral shear (but not hydrostatic) stress within the cell envelope promotes disassembly of the tripartite efflux complex CusCBA, a system used by Escherichia coli to resist copper and silver toxicity. By promoting disassembly of this protein complex, mechanical forces within the cell envelope make the bacteria more susceptible to metal toxicity. These findings demonstrate that mechanical forces can inhibit the function of cell envelope protein assemblies in bacteria and suggest the possibility that other multicomponent, transenvelope efflux complexes may be sensitive to mechanical forces including complexes involved in antibiotic resistance, cell division, and translocation of outer membrane components. By modulating the function of proteins within the cell envelope, mechanical stress has the potential to regulate multiple processes required for bacterial survival and growth.


Assuntos
Fenômenos Biomecânicos/fisiologia , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Membrana Transportadoras , Estresse Mecânico , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Difusão , Escherichia coli/química , Escherichia coli/fisiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Imagem Individual de Molécula
4.
J Hum Evol ; 159: 103050, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34438297

RESUMO

The foot has played a prominent role in evaluating early hominin locomotion. The calcaneus, in particular, plays an important role in weight-bearing. Although the calcanei of early hominins have been previously scrutinized, a three-dimensional analysis of the entire calcaneal shape has not been conducted. Here, we investigate the relationship between external calcaneal shape and locomotion in modern Homo sapiens (n = 130), Gorilla (n = 86), Pan (n = 112), Pongo (n = 31), Papio (n = 28), and hylobatids (Hylobates, Symphalangus; n = 32). We use these results to place the calcanei attributed to Australopithecus sediba, A. africanus, A. afarensis, H. naledi, and Homo habilis/Paranthropus boisei into a locomotor context. Calcanei were scanned using either surface scanning or micro-CT and their external shape analyzed using a three-dimensional geometric morphometric sliding semilandmark analysis. Blomberg's K statistic was used to estimate phylogenetic signal in the shape data. Shape variation was summarized using a principal components analysis. Procrustes distances between all taxa as well as distances between each fossil and the average of each taxon were calculated. Blomberg's K statistic was small (K = 0.1651), indicating weak phylogenetic effects, suggesting variation is driven by factors other than phylogeny (e.g., locomotion or body size). Modern humans have a large calcaneus relative to body size and display a uniquely convex cuboid facet, facilitating a rigid midfoot for bipedalism. More arboreal great apes display relatively deeper cuboid facet pivot regions for increased midfoot mobility. Australopithecus afarensis demonstrates the most human-like calcaneus, consistent with obligate bipedalism. Homo naledi is primarily modern human-like, but with some intermediate traits, suggesting a different form of bipedalism than modern humans. Australopithecus africanus, A. sediba, and H. habilis/P. boisei calcanei all possess unique combinations of human and nonhuman ape-like morphologies, suggesting a combination of bipedal and arboreal behaviors.


Assuntos
Calcâneo , Hominidae , Animais , Evolução Biológica , Calcâneo/anatomia & histologia , Fósseis , Gorilla gorilla , Humanos , Filogenia
5.
Am J Phys Anthropol ; 174(1): 49-65, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871028

RESUMO

OBJECTIVES: The primate foot has been extensively investigated because of its role in weight-bearing; however, the calcaneus has been relatively understudied. Here we examine entire gorilla calcaneal external shape to understand its relationship with locomotor behavior. MATERIALS AND METHODS: Calcanei of Gorilla gorilla gorilla (n = 43), Gorilla beringei graueri (n = 20), and Gorilla beringei beringei (n = 15) were surface or micro-CT scanned. External shape was analyzed through a three-dimensional geometric morphometric sliding semilandmark analysis. Semilandmarks were slid relative to an updated Procrustes average in order to minimize the bending energy of the thin plate spline interpolation function. Shape variation was summarized using principal components analysis of shape coordinates. Procrustes distances between taxa averages were calculated and resampling statistics run to test pairwise differences. Linear measures were collected and regressed against estimated body mass. RESULTS: All three taxa exhibit statistically different morphologies (p < .001 for pairwise comparisons). G. g. gorilla demonstrates an anteroposteriorly elongated calcaneus with a deeper cuboid pivot region and mediolaterally flatter posterior talar facet. G. b. beringei possesses the flattest cuboid and most medially-angled posterior talar facets. G. b. graueri demonstrates intermediate articular facet morphology, a medially-angled tuberosity, and an elongated peroneal trochlea. DISCUSSION: Articular facet differences separate gorillas along a locomotor gradient. G. g. gorilla is adapted for arboreality with greater joint mobility, while G. b. beringei is adapted for more stereotypical loads associated with terrestriality. G. b. graueri's unique posterolateral morphology may be due to a secondary transition to greater arboreality from a more terrestrial ancestor.


Assuntos
Variação Anatômica/fisiologia , Calcâneo/anatomia & histologia , Gorilla gorilla/anatomia & histologia , Gorilla gorilla/fisiologia , Pontos de Referência Anatômicos/anatomia & histologia , Pontos de Referência Anatômicos/diagnóstico por imagem , Animais , Antropologia Física , Comportamento Animal/fisiologia , Calcâneo/diagnóstico por imagem , Calcâneo/fisiologia , Feminino , Hominidae/anatomia & histologia , Hominidae/fisiologia , Masculino , Caracteres Sexuais
6.
J Hum Evol ; 132: 47-60, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31203851

RESUMO

Limb bone articular and diaphyseal proportions have been shown to relate to locomotor behavior in broad comparisons across catarrhines, but comparisons among phylogenetically and functionally more closely related species may be particularly useful in investigating form-function relationships that can be applied to fossil taxa. Here we compare inter- and intra-limb proportions of diaphyseal strength and articular surface area and breadth of the femur and humerus with frequencies of leaping and vertical climbing behavior in 13 cercopithecid species. Leaping frequency is highly positively correlated with femoral/humeral diaphyseal strength, moderately positively correlated with femoral/humeral articular breadth, and less highly correlated with femoral/humeral articular surface area. These results are consistent with predicted higher bending loads as well as joint reaction forces on the femora of leapers. Surface areas may show a weaker association because they also directly impact joint excursion and are thus more influenced by other aspects of locomotion, including climbing. Climbing frequency is positively correlated with humeral head articular surface area/diaphyseal strength, but weakly negatively correlated with femoral head articular surface area/diaphyseal strength. These combined trends lead to a strong negative association between climbing and femoral/humeral head surface area. Femoral/humeral diaphyseal strength and distal articular breadth are not correlated with climbing frequency. The climbing results are consistent with greater shoulder mobility in more frequent vertical climbers. The lack of such a relationship in the femur among these taxa contrasts with earlier findings for catarrhines more generally, including hominoids, and may be a result of different climbing kinematics in cercopithecoids involving less hip abduction than in hominoids. Different use of the forelimb during climbing in cercopithecoids and hominoids may also explain the lack of association between femoral/humeral diaphyseal strength and climbing in the present study, in contrast to comparisons across catarrhines more generally.


Assuntos
Cercopithecidae/fisiologia , Diáfises/anatomia & histologia , Fêmur/anatomia & histologia , Úmero/anatomia & histologia , Locomoção , Animais , Cercopithecidae/anatomia & histologia
7.
Am J Biol Anthropol ; 184(3): e24939, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38631677

RESUMO

OBJECTIVES: Calcaneal external shape differs among nonhuman primates relative to locomotion. Such relationships between whole-bone calcaneal trabecular structure and locomotion, however, have yet to be studied. Here we analyze calcaneal trabecular architecture in Gorilla gorilla gorilla, Gorilla beringei beringei, and G. b. graueri to investigate general trends and fine-grained differences among gorilla taxa relative to locomotion. MATERIALS AND METHODS: Calcanei were micro-CT scanned. A three-dimensional geometric morphometric sliding semilandmark analysis was carried out and the final landmark configurations used to position 156 volumes of interest. Trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp), and bone volume fraction (BV/TV) were calculated using the BoneJ plugin for ImageJ and MATLAB. Non-parametric MANOVAs were run to test for significant differences among taxa in parameter raw values and z-scores. Parameter distributions were visualized using color maps and summarized using principal components analysis. RESULTS: There are no significant differences in raw BV/TV or Tb.Th among gorillas, however G. b. beringei significantly differs in z-scores for both parameters (p = <0.0271). All three taxa exhibit relatively lower BV/TV and Tb.Th in the posterior half of the calcaneus. This gradation is exacerbated in G. b. beringei. G. b. graueri significantly differs from other taxa in Tb.Sp z-scores (p < 0.001) indicating a different spacing distribution. DISCUSSION: Relatively higher Tb.Th and BV/TV in the anterior calcaneus among gorillas likely reflects higher forces associated with body mass (transmitted through the subtalar joint) relative to forces transferred through the posterior calcaneus. The different Tb.Sp pattern in G. b. graueri may reflect proposed differences in foot positioning during locomotion.


Assuntos
Calcâneo , Osso Esponjoso , Gorilla gorilla , Animais , Calcâneo/anatomia & histologia , Calcâneo/fisiologia , Calcâneo/diagnóstico por imagem , Gorilla gorilla/anatomia & histologia , Gorilla gorilla/fisiologia , Osso Esponjoso/anatomia & histologia , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/fisiologia , Masculino , Microtomografia por Raio-X , Feminino , Antropologia Física , Locomoção/fisiologia
8.
Anat Rec (Hoboken) ; 307(9): 3152-3165, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38357839

RESUMO

Investigating skeletal adaptations to bipedalism informs our understanding of form-function relationships. The calcaneus is an important skeletal element to study because it is a weight-bearing bone with a critical locomotor role. Although other calcaneal regions have been well studied, we lack a clear understanding of the functional role of the lateral plantar process (LPP). The LPP is a bony protuberance on the inferolateral portion of the calcaneus thought to aid the tuberosity in transmission of ground reaction forces during heel-strike. Here, we analyze LPP internal trabecular structure relative to other calcaneal regions to investigate its potential functional affinities. Human calcanei (n = 20) were micro-CT scanned, and weighted spherical harmonic analysis outputs were used to position 251 volumes of interest (VOI) within each bone. Trabecular thickness (Tb.Th), spacing (Tb.Sp), degree of anisotropy (DA), and bone volume fraction (BV/TV) were calculated for each VOI. Similarities in BV/TV and DA (p = 0.2741) between the LPP and inferior tuberosity support suggestions that the LPP is a weight-bearing structure that may transmit forces in a similar direction. The LPP significantly differs from the inferior tuberosity in Tb.Th and Tb.Sp (p < 0.05). Relatively thinner, more closely spaced trabeculae in the LPP may serve to increase internal surface area to compensate for its relatively small size compared to the tuberosity. Significant differences in all parameters between LPP and joint articular surfaces indicate that trabecular morphology is differently adapted for the transmission of forces associated with body mass through joints.


Assuntos
Calcâneo , Microtomografia por Raio-X , Humanos , Calcâneo/anatomia & histologia , Calcâneo/fisiologia , Calcâneo/diagnóstico por imagem , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Osso Esponjoso/anatomia & histologia , Osso Esponjoso/fisiologia , Osso Esponjoso/diagnóstico por imagem , Suporte de Carga/fisiologia , Adulto
9.
J Orthop Res ; 42(8): 1780-1790, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38483072

RESUMO

The shape of the talus, its internal structure, and its mechanical properties are important in determining talar behavior during loading, which may be significant for the design of surgical tools and implants. Although recent studies using statistical shape modeling have described quantitative talar external shape variation, no similar quantitative study exists to describe the density distribution of internal talar structure. The goal of this study is to quantify statistical variation in talar shape and density to benefit the design of talar implants. To this end, weight-bearing computed tomography (CT) scans of the ankle were collected in neutral, bilateral standing posture, and three-dimensional models were generated for each talus. Local density derived from the Hounsfield unit of each CT voxel was extracted. A weighted spherical harmonic analysis was performed to quantify the talar external shape. One hundred and seventy-nine volumes of interest were placed in the same relative position within each talus to quantify the talar density. Additionally, a finite element analysis (FEA) was conducted on a talus with both heterogeneous and homogeneous material properties to observe the effect of these properties on the stress and strain response. Significant differences were found in the talar density in sex and age, as well as in the stress and strain response between homogeneous and heterogeneous FEA. These differences show the importance of considering heterogeneity when examining the load response of tarsal bones.


Assuntos
Densidade Óssea , Análise de Elementos Finitos , Tálus , Humanos , Tálus/diagnóstico por imagem , Tálus/anatomia & histologia , Tálus/fisiologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X , Idoso , Adulto Jovem , Suporte de Carga
10.
ACS Biomater Sci Eng ; 10(5): 2956-2966, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38593061

RESUMO

Bacteria experience substantial physical forces in their natural environment, including forces caused by osmotic pressure, growth in constrained spaces, and fluid shear. The cell envelope is the primary load-carrying structure of bacteria, but the mechanical properties of the cell envelope are poorly understood; reports of Young's modulus of the cell envelope of Escherichia coli range from 2 to 18 MPa. We developed a microfluidic system to apply mechanical loads to hundreds of bacteria at once and demonstrated the utility of the approach for evaluating whole-cell stiffness. Here, we extend this technique to determine Young's modulus of the cell envelope of E. coli and of the pathogens Vibrio cholerae and Staphylococcus aureus. An optimization-based inverse finite element analysis was used to determine the cell envelope Young's modulus from observed deformations. The Young's modulus values of the cell envelope were 2.06 ± 0.04 MPa for E. coli, 0.84 ± 0.02 MPa for E. coli treated with a chemical (A22) known to reduce cell stiffness, 0.12 ± 0.03 MPa for V. cholerae, and 1.52 ± 0.06 MPa for S. aureus (mean ± SD). The microfluidic approach allows examination of hundreds of cells at once and is readily applied to Gram-negative and Gram-positive organisms as well as rod-shaped and cocci cells, allowing further examination of the structural causes behind differences in cell envelope Young's modulus among bacterial species and strains.


Assuntos
Módulo de Elasticidade , Escherichia coli , Staphylococcus aureus , Vibrio cholerae , Staphylococcus aureus/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Vibrio cholerae/fisiologia , Escherichia coli/fisiologia , Escherichia coli/efeitos dos fármacos , Análise de Elementos Finitos , Membrana Celular/fisiologia , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos
11.
Am J Biol Anthropol ; 181(4): 545-563, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37300336

RESUMO

OBJECTIVES: Differences in talar articular morphology relative to locomotion have recently been found within Pan and Gorilla. Whole-bone talar morphology within, and shared variation among, Pan and Gorilla (sub)species, however, has yet to be investigated. Here we separately analyze talar external shape within Pan (P. t. troglodytes, P. t. schweinfurthii, P. t. verus, P. paniscus) and Gorilla (G. g. gorilla, G. b. beringei, G. b. graueri) relative to degree of arboreality and body size. Pan and Gorilla are additionally analyzed together to determine if consistent shape differences exist within the genera. MATERIALS AND METHODS: Talar external shape was quantified using a weighted spherical harmonic analysis. Shape variation both within and among Pan and Gorilla was described using principal component analyses. Root mean square distances were calculated between taxon averages, and resampling statistics conducted to test for pairwise differences. RESULTS: P. t. verus (most arboreal Pan) talar shape significantly differs from other Pan taxa (p < 0.05 for pairwise comparisons) driven by more asymmetrical trochlear rims and a medially-set talar head. P. t. troglodytes, P. t. schweinfurthii, and P. paniscus do not significantly differ (p > 0.05 for pairwise comparisons). All gorilla taxa exhibit significantly different talar morphologies (p < 0.007 for pairwise comparisons). The more terrestrial subspecies of G. beringei and P. troglodytes exhibit a superoinferiorly taller talar head/neck complex. DISCUSSION: P. t. verus exhibits talar morphologies that have been previously related to more frequent arboreality. The adaptations in the more terrestrial G. beringei and P. troglodytes subspecies may serve to facilitate load transmission.


Assuntos
Hominidae , Animais , Aclimatação , Adaptação Fisiológica , Gorilla gorilla/anatomia & histologia , Hominidae/anatomia & histologia , Árvores
12.
Sci Rep ; 13(1): 13979, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633922

RESUMO

Mechanosensitive mechanisms are often used to sense damage to tissue structure, stimulating matrix synthesis and repair. While this kind of mechanoregulatory process is well recognized in eukaryotic systems, it is not known whether such a process occurs in bacteria. In Vibrio cholerae, antibiotic-induced damage to the load-bearing cell wall promotes increased signaling by the two-component system VxrAB, which stimulates cell wall synthesis. Here we show that changes in mechanical stress within the cell envelope are sufficient to stimulate VxrAB signaling in the absence of antibiotics. We applied mechanical forces to individual bacteria using three distinct loading modalities: extrusion loading within a microfluidic device, direct compression and hydrostatic pressure. In all cases, VxrAB signaling, as indicated by a fluorescent protein reporter, was increased in cells submitted to greater magnitudes of mechanical loading, hence diverse forms of mechanical stimuli activate VxrAB signaling. Reduction in cell envelope stiffness following removal of the endopeptidase ShyA led to large increases in cell envelope deformation and substantially increased VxrAB response, further supporting the responsiveness of VxrAB. Our findings demonstrate a mechanosensitive gene regulatory system in bacteria and suggest that mechanical signals may contribute to the regulation of cell wall homeostasis.


Assuntos
Antibacterianos , Parede Celular , Membrana Celular , Homeostase , Expressão Gênica
13.
Anat Rec (Hoboken) ; 305(1): 100-122, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33843151

RESUMO

Among human and nonhuman apes, calcaneal morphology exhibits significant variation that has been related to locomotor behavior. Due to its role in weight-bearing, however, both body size and locomotion may impact calcaneal morphology. Determining how calcaneal morphologies vary as a function of body size is thus vital to understanding calcaneal functional adaptation. Here, we study calcaneus allometry and relative size in humans (n = 120) and nonhuman primates (n = 278), analyzing these relationships in light of known locomotor behaviors. Twelve linear measures and three articular facet surface areas were collected on calcaneus surface models. Body mass was estimated using femoral head superoinferior breadth. Relationships between calcaneal dimensions and estimated body mass were analyzed across the sample using phylogenetic least squares regression analyses (PGLS). Differences between humans and pooled nonhuman primates were tested using RMA ANCOVAs. Among (and within) genera residual differences from both PGLS regressions and isometry were analyzed using ANOVAs with post hoc multiple comparison tests. The relationships between all but two calcaneus dimensions and estimated body mass exhibit phylogenetic signal at the smallest taxonomic scale. This signal disappears when reanalyzed at the genus level. Calcaneal morphology varies relative to both body size and locomotor behavior. Humans have larger calcanei for estimated body mass relative to nonhuman primates as a potential adaptation for bipedalism. More terrestrial taxa exhibit longer calcaneal tubers for body mass, increasing the triceps surae lever arm. Among nonhuman great apes, more arboreal taxa have larger cuboid facet surface areas for body mass, increasing calcaneocuboid mobility.


Assuntos
Calcâneo , Hominidae , Animais , Humanos , Extremidade Inferior , Papio , Filogenia
14.
Am J Biol Anthropol ; 177(3): 501-529, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-36787793

RESUMO

OBJECTIVES: Limb length and trunk proportions are determined in a large, taxonomically and environmentally diverse sample of gorillas and related to variation in locomotion, climate, altitude, and diet. MATERIALS AND METHODS: The sample includes 299 gorilla skeletons, 115 of which are infants and juveniles, distributed between western lowland (G. gorilla gorilla), low and high elevation grauer (G. beringei graueri), and Virunga mountain gorillas (G. b. beringei). Limb bone and vertebral column lengths scaled to body mass are compared between subgroups by age group. RESULTS: All G. beringei have relatively short 3rd metapodials and manual proximal phalanges compared to G. gorilla, and this difference is apparent in infancy. All G. beringei also have shortened total limb lengths relative to either body mass or vertebral column length, although patterns of variation in individual skeletal elements are more complex, and infants do not display the same patterns as adults. Mountain gorillas have relatively long clavicles, present in infancy, and a relatively long thoracic (but not lumbosacral) vertebral column. DISCUSSION: A variety of environmental factors likely contributed to observed patterns of morphological variation among extant gorillas. We interpret the short hand and foot bones of all G. beringei as genetic adaptations to greater terrestriality in the last common ancestor of G. beringei; variation in other limb lengths to climatic adaptation, both genetic and developmental; and the larger thorax of G. b. beringei to adaptation to reduced oxygen pressure at high altitudes, again as a product of both genetic differences and environmental influences during development.


Assuntos
Altitude , Gorilla gorilla , Animais , Humanos , Gorilla gorilla/anatomia & histologia , Ossos do Pé
15.
Anat Rec (Hoboken) ; 304(2): 266-278, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32378312

RESUMO

Extinct sloths represent a wide range of morphological, locomotor, and body size variation. Researchers have examined femoral neck angle in two dimensions to hypothesize locomotor behaviors in this group; however, this measure does not account for femoral neck anteversion. Here, we present a new method for quantifying femoral neck anteversion angle, in addition to femoral neck angle, to capture the 3D position of the femoral head/neck. Femora of extant (n = 21; Bradypus and Choloepus) and extinct (n = 49; Acratocnus, Megalocnus, Neocnus, and Parocnus) sloths were surface scanned and their surface models used to calculate three angles of femoral neck anteversion and femoral neck angle. Femoral neck anteversion was calculated as the angle between the femoral neck axis and the geometric axis of the femoral condyles (GA), the 35% cross section axis, and a trochanter axis. Femoral neck angle was calculated as the angle between the femoral neck and shaft axes. Genera were compared using ANOVAs with post hoc multiple comparisons for each angle. Femoral neck angle and femoral neck anteversion relative to the cross section were also analyzed. Significant differences among genera exist for all angles, (p < .001) but not all angles separate all genera. Femoral neck and anteversion angles typically yield different results, demonstrating the utility of analyzing both angles. The GA and cross section angles are highly correlated in sloths, with the exception of comparisons among Megalocnus, Parocnus, and Neocnus, suggesting morphological variation in the distal femur. While this method was applied to sloths, it has broad applicability to mammalian groups.


Assuntos
Colo do Fêmur/anatomia & histologia , Locomoção/fisiologia , Bichos-Preguiça/anatomia & histologia , Animais , Fenômenos Biomecânicos/fisiologia , Colo do Fêmur/fisiologia , Imageamento Tridimensional , Bichos-Preguiça/fisiologia , Tomografia Computadorizada por Raios X
16.
APL Bioeng ; 4(2): 021501, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32266323

RESUMO

Physical forces play a profound role in the survival and function of all known forms of life. Advances in cell biomechanics and mechanobiology have provided key insights into the physiology of eukaryotic organisms, but much less is known about the roles of physical forces in bacterial physiology. This review is an introduction to bacterial mechanics intended for persons familiar with cells and biomechanics in mammalian cells. Bacteria play a major role in human health, either as pathogens or as beneficial commensal organisms within the microbiome. Although bacteria have long been known to be sensitive to their mechanical environment, understanding the effects of physical forces on bacterial physiology has been limited by their small size (∼1 µm). However, advancements in micro- and nano-scale technologies over the past few years have increasingly made it possible to rigorously examine the mechanical stress and strain within individual bacteria. Here, we review the methods currently used to examine bacteria from a mechanical perspective, including the subcellular structures in bacteria and how they differ from those in mammalian cells, as well as micro- and nanomechanical approaches to studying bacteria, and studies showing the effects of physical forces on bacterial physiology. Recent findings indicate a large range in mechanical properties of bacteria and show that physical forces can have a profound effect on bacterial survival, growth, biofilm formation, and resistance to toxins and antibiotics. Advances in the field of bacterial biomechanics have the potential to lead to novel antibacterial strategies, biotechnology approaches, and applications in synthetic biology.

17.
Anat Rec (Hoboken) ; 302(5): 775-784, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30312539

RESUMO

Larger terrestrial mammals have generally been found to use more extended limb postures, a mechanism which maintains muscular requirements at larger sizes by improving the effective mechanical advantage (EMA) of limb musculature. Felids, however, have been documented to maintain joint angles across body sizes. If felid morphology scales isometrically, it would mean larger felids have relatively weaker muscles, compromising locomotor activities. Here, we examine the allometric relationships between the EMA of the elbow and knee extensors and body mass, finding that the EMA of the triceps brachii and quadriceps muscles scale with positive allometry. When species-specific joint angles were used rather than felid-average joint angles, EMA scales to body mass with more positive allometry. When the scaling of the muscle and ground reaction force (GRF) lever arms were investigated individually the allometric signal was lost; however, the muscle lever arms generally have allometric slope coefficients that are consistent with positive allometry, while the GRF lever arms demonstrate negative allometric slope coefficients. This suggests there are subtle alterations to limb morphology allowing different felid species to achieve an increased EMA via distinctive mechanisms. The quadriceps EMA was found to scale with sufficient positive allometry to compensate for increases in size without alteration in muscular anatomy; however, this is not the case for the triceps brachii EMA. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. Anat Rec, 302:775-784, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Felidae/fisiologia , Membro Anterior/anatomia & histologia , Membro Posterior/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Amplitude de Movimento Articular/fisiologia , Animais , Felidae/anatomia & histologia , Feminino , Membro Anterior/fisiologia , Membro Posterior/fisiologia , Articulações/anatomia & histologia , Articulações/fisiologia , Locomoção/fisiologia , Masculino , Músculo Esquelético/fisiologia
18.
J Dent Educ ; 78(4): 575-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24706687

RESUMO

The national underrepresentation of minorities in dental schools and the dental profession is a significant concern. Despite efforts over previous years, the number of practicing dentists from underrepresented minority (URM) groups has increased very little. Many dental schools have adopted a holistic admissions review process that uses noncognitive factors in an effort to increase diversity. However, application timing also significantly impacts the success of candidates. This study examined whether URM students' applying late in the application cycle contributes to their lower enrollment. This study attempted to fill a void in the dental admissions knowledge base by examining whether the timing of dental school applications in a rolling admissions system with a set number of interview spots favors those who apply early. De-identified applications (N=1,673) from one U.S. dental school in 2011 were examined. A binary logistic regression analysis revealed that URM applicants were significantly more likely to apply later in the admission cycle than non-URM applicants by a factor of 63 percent (p=0.001), increasing the competiveness for fewer remaining spots. These results suggest the need for pre-admission interventions and for future research to understand and address barriers that impact application timing.


Assuntos
Diversidade Cultural , Critérios de Admissão Escolar , Faculdades de Odontologia , Estudantes de Odontologia , Escolaridade , Etnicidade/estatística & dados numéricos , Humanos , Entrevistas como Assunto , Kentucky , Grupos Minoritários/estatística & dados numéricos , Pais/educação , Seleção de Pessoal , Características de Residência , Estudantes de Odontologia/estatística & dados numéricos , Fatores de Tempo , População Branca/estatística & dados numéricos
19.
Health Econ Policy Law ; 5(2): 171-99, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19723354

RESUMO

Although there has been substantial debate and research concerning the economic impact of neo-liberal practices, there is a paucity of research about the potential relation between neo-liberal economic practices and population health. We assessed the extent to which neo-liberal policies and practices are associated with population health at the national level. We collected data on 119 countries between 1980 and 2004. We measured neo-liberalism using the Fraser Institute's Economic Freedom of the World (EFW) Index, which gives an overall score as well as a score for each of five different aspects of neo-liberal economic practices: (1) size of government, (2) legal structure and security of property rights, (3) access to sound money, (4) freedom to exchange with foreigners and (5) regulation of credit, labor and business. Our measure of population health was under-five mortality. We controlled for potential mediators (income distribution, social capital and openness of political institutions) and confounders (female literacy, total population, rural population, fertility, gross domestic product per capita and time period). In longitudinal multivariable analyses, we found that the EFW index did not have an effect on child mortality but that two of its components: improved security of property rights and access to sound money were associated with lower under-five mortality (p = 0.017 and p = 0.024, respectively). When stratifying the countries by level of income, less regulation of credit, labor and business was associated with lower under-five mortality in high-income countries (p = 0.001). None of the EFW components were significantly associated with under-five mortality in low-income countries. This analysis suggests that the concept of 'neo-liberalism' is not a monolithic entity in its relation to health and that some 'neo-liberal' policies are consistent with improved population health. Further work is needed to corroborate or refute these findings.


Assuntos
Política de Saúde/economia , Internacionalidade , Política , Saúde Pública/economia , Feminino , Liberdade , Nível de Saúde , História do Século XX , História do Século XXI , Humanos , Masculino , Modelos Estatísticos , Mortalidade , Análise Multivariada , Política Pública/economia , Estatística como Assunto
20.
Ther Clin Risk Manag ; 1(4): 321-32, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18360574

RESUMO

The delivery of safe high quality patient care is a major issue in clinical settings. However, the implementation of evidence-based practice and educational interventions are not always effective at improving performance. A staff-led behavioral management process was implemented in a large single-site acute (secondary and tertiary) hospital in the North of England for 26 weeks. A quasi-experimental, repeated-measures, within-groups design was used. Measurement focused on quality care behaviors (ie, documentation, charting, hand washing). The results demonstrate the efficacy of a staff-led behavioral management approach for improving quality-care practices. Significant behavioral change (F [6, 19] = 5.37, p < 0.01) was observed. Correspondingly, statistically significant (t-test [t] = 3.49, df = 25, p < 0.01) reductions in methicillin-resistant Staphylococcus aureus (MRSA) were obtained. Discussion focuses on implementation issues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA