Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem J ; 407(2): 231-41, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17617058

RESUMO

AS160 (Akt substrate of 160 kDa) mediates insulin-stimulated GLUT4 (glucose transporter 4) translocation, but is widely expressed in insulin-insensitive tissues lacking GLUT4. Having isolated AS160 by 14-3-3-affinity chromatography, we found that binding of AS160 to 14-3-3 isoforms in HEK (human embryonic kidney)-293 cells was induced by IGF-1 (insulin-like growth factor-1), EGF (epidermal growth factor), PMA and, to a lesser extent, AICAR (5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside). AS160-14-3-3 interactions were stabilized by chemical cross-linking and abolished by dephosphorylation. Eight residues on AS160 (Ser318, Ser341, Thr568, Ser570, Ser588, Thr642, Ser666 and Ser751) were differentially phosphorylated in response to IGF-1, EGF, PMA and AICAR. The binding of 14-3-3 proteins to HA-AS160 (where HA is haemagglutinin) was markedly decreased by mutation of Thr642 and abolished in a Thr642Ala/Ser341Ala double mutant. The AGC (protein kinase A/protein kinase G/protein kinase C-family) kinases RSK1 (p90 ribosomal S6 kinase 1), SGK1 (serum- and glucocorticoid-induced protein kinase 1) and PKB (protein kinase B) displayed distinct signatures of AS160 phosphorylation in vitro: all three kinases phosphorylated Ser318, Ser588 and Thr642; RSK1 also phosphorylated Ser341, Ser751 and to a lesser extent Thr568; and SGK1 phosphorylated Thr568 and Ser751. AMPK (AMP-activated protein kinase) preferentially phosphorylated Ser588, with less phosphorylation of other sites. In cells, the IGF-1-stimulated phosphorylations, and certain EGF-stimulated phosphorylations, were inhibited by PI3K (phosphoinositide 3-kinase) inhibitors, whereas the RSK inhibitor BI-D1870 inhibited the PMA-induced phosphorylations. The expression of LKB1 in HeLa cells and the use of AICAR in HEK-293 cells promoted phosphorylation of Ser588, but only weak Ser341 and Thr642 phosphorylations and binding to 14-3-3s. Paradoxically however, phenformin activated AMPK without promoting AS160 phosphorylation. The IGF-1-induced phosphorylation of the novel phosphorylated Ser666-Pro site was suppressed by AICAR, and by combined mutation of a TOS (mTOR signalling)-like sequence (FEMDI) and rapamycin. Thus, although AS160 is a common target of insulin, IGF-1, EGF, PMA and AICAR, these stimuli induce distinctive patterns of phosphorylation and 14-3-3 binding, mediated by at least four protein kinases.


Assuntos
Proteínas 14-3-3/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Fator de Crescimento Epidérmico/farmacologia , Proteínas Ativadoras de GTPase/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Ribonucleotídeos/farmacologia , Aminoácidos , Aminoimidazol Carboxamida/farmacologia , Sítios de Ligação , Linhagem Celular , Humanos , Hipoglicemiantes/farmacologia , Insulina , Fosforilação , Ligação Proteica
2.
Plant J ; 47(2): 211-23, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16771775

RESUMO

Trehalose-6-phosphate is a 'sugar signal' that regulates plant metabolism and development. The Arabidopsis genome encodes trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphatase (TPP) enzymes. It also encodes class II proteins (TPS isoforms 5-11) that contain both TPS-like and TPP-like domains, although whether these have enzymatic activity is unknown. In this paper, we show that TPS5, 6 and 7 are phosphoproteins that bind to 14-3-3 proteins, by using 14-3-3 affinity chromatography, 14-3-3 overlay assays, and by co-immunoprecipitating TPS5 and 14-3-3 isoforms from cell extracts. GST-TPS5 bound to 14-3-3s after in vitro phosphorylation at Ser22 and Thr49 by either mammalian AMP-activated protein kinase (AMPK) or partially purified plant Snf1-related protein kinase 1 (SnRK1s). Dephosphorylation of TPS5, or mutation of either Ser22 or Thr49, abolished binding to 14-3-3s. Ser22 and Thr49 are both conserved in TPS5, 7, 9 and 10. When GST-TPS5 was expressed in human HEK293 cells, Thr49 was phosphorylated in response to 2-deoxyglucose or phenformin, stimuli that activate the AMPK via the upstream kinase LKB1. 2-deoxyglucose stimulated Thr49 phosphorylation of endogenous TPS5 in Arabidopsis cells, whereas phenformin did not. Moreover, extractable SnRK1 activity was increased in Arabidopsis cells in response to 2-deoxyglucose. The plant kinase was inactivated by dephosphorylation and reactivated by phosphorylation with human LKB1, indicating that elements of the SnRK1/AMPK pathway are conserved in Arabidopsis and human cells. We hypothesize that coordinated phosphorylation and 14-3-3 binding of nitrate reductase (NR), 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (F2KP) and class II TPS isoforms mediate responses to signals that activate SnRK1.


Assuntos
Proteínas 14-3-3/metabolismo , Arabidopsis/metabolismo , Desoxiglucose/farmacologia , Glucosiltransferases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Alanina/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Células Cultivadas , Cromatografia de Afinidade , Humanos , Imunoprecipitação , Complexos Multienzimáticos/metabolismo , Mutação de Sentido Incorreto , Fenformin/farmacologia , Fosforilação/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Serina/metabolismo , Treonina/metabolismo
3.
Biochem J ; 368(Pt 2): 565-72, 2002 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-12217078

RESUMO

Unstimulated PC12 pheochromocytoma cells contain many proteins that bound to 14-3-3s in competition with a 14-3-3-binding peptide. Additional proteins, including one of 39 kDa (p39), became capable of binding to 14-3-3s in phosphatidylinositol 3-kinase-dependent responses to epidermal growth factor or nerve growth factor in vivo. The growth factor regulation was unaffected by inhibitors of the mitogen- or stress-activated protein kinase pathways, or by glucose starvation, but was blocked by amino acid starvation and only partially blocked by rapamycin. p39 in extracts of unstimulated, nutrient-fed cells, but not nutrient-starved cells, was able to bind to 14-3-3s after phosphorylation by protein kinase B (PKB) in vitro. Nutrient starvation did not affect the growth factor-stimulated activation of PKB in vivo. Either cycloheximide (CHX) or the cysteine protease inhibitor, MG132, restored the responsiveness of p39 to growth factors in nutrient-starved cells. In contrast, MG132 could not replace amino acids in supporting the growth factor-stimulated phosphorylation of two downstream targets of mTOR (mammalian target of rapamycin), namely eukaryotic initiation factor 4E binding protein 1 (4E-BP1) and p70 S6 kinase. CHX permitted complete growth factor-stimulated phosphorylation of both 4E-BP1 and p70 S6 kinase in nutrient- starved cells; however, unlike p39, phosphorylation of these proteins was blocked by rapamycin. These findings implicate PKB (or an enzyme with similar specificity) in the growth factor-triggered phosphorylation of p39. In addition, amino acid starvation induces a CHX- and MG132-sensitive pathway that targets p39 and appears to be distinct from the mechanism of regulation of 4E-BP1 and p70 S6 kinase.


Assuntos
Aminoácidos/farmacologia , Substâncias de Crescimento/farmacologia , Proteínas Serina-Treonina Quinases , Proteínas/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas 14-3-3 , Animais , Proteínas de Transporte/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Extratos Celulares , Cromonas/farmacologia , Cicloeximida/farmacologia , Inibidores Enzimáticos/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Glucose/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Leupeptinas/farmacologia , Morfolinas/farmacologia , Fator de Crescimento Neural/farmacologia , Células PC12/efeitos dos fármacos , Células PC12/metabolismo , Fosfoproteínas/efeitos dos fármacos , Fosfoproteínas/metabolismo , Fosforilação , Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Ratos , Proteínas Quinases S6 Ribossômicas 70-kDa/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Tirosina 3-Mono-Oxigenase/efeitos dos fármacos
4.
Plant J ; 37(5): 654-67, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14871307

RESUMO

Fructose 2,6-bisphosphate (fru-2,6-P2) is a signalling metabolite that regulates photosynthetic carbon partitioning in plants. The content of fru-2,6-P2 in Arabidopsis leaves varied in response to photosynthetic activity with an abrupt decrease at the start of the photoperiod, gradual increase through the day, and modest decrease at the start of the dark period. In Arabidopsis suspension cells, fru-2,6-P2 content increased in response to an unknown signal upon transfer to fresh culture medium. This increase was blocked by either 2-deoxyglucose or the protein phosphatase inhibitor, calyculin A, and the effects of calyculin A were counteracted by the general protein kinase inhibitor K252a. The changes in fru-2,6-P2 at the start of dark period in leaves and in the cell experiments generally paralleled changes in nitrate reductase (NR) activity. NR is inhibited by protein phosphorylation and binding to 14-3-3 proteins, raising the question of whether fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase protein from Arabidopsis thaliana (AtF2KP), which both generates and hydrolyses fru-2,6-P2, is also regulated by phosphorylation and 14-3-3s. Consistent with this hypothesis, AtF2KP and NR from Arabidopsis cell extracts bound to a 14-3-3 column, and were eluted specifically by a synthetic 14-3-3-binding phosphopeptide (ARAApSAPA). 14-3-3s co-precipitated with recombinant glutathione S-transferase (GST)-AtF2KP that had been incubated with Arabidopsis cell extracts in the presence of Mg-ATP. 14-3-3s bound directly to GST-AtF2KP that had been phosphorylated on Ser220 (SLSASGpSFR) and Ser303 (RLVKSLpSASSF) by recombinant Arabidopsis calcium-dependent protein kinase isoform 3 (CPK3), or on Ser303 by rat liver mammalian AMP-activated protein kinase (AMPK; homologue of plant SNF-1 related protein kinases (SnRKs)) or an Arabidopsis cell extract. We have failed to find any direct effect of 14-3-3s on the F2KP activity in vitro to date. Nevertheless, our findings indicate the possibility that 14-3-3 binding to SnRK1-phosphorylated sites on NR and F2KP may regulate both nitrate assimilation and sucrose/starch partitioning in leaves.


Assuntos
Arabidopsis/enzimologia , Fosfofrutoquinase-2/metabolismo , Folhas de Planta/enzimologia , Proteínas de Plantas , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas 14-3-3 , Quinases Proteína-Quinases Ativadas por AMP , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Carbazóis/farmacologia , Escuridão , Desoxiglucose/metabolismo , Glutationa Transferase/metabolismo , Alcaloides Indólicos , Luz , Toxinas Marinhas , Nitrato Redutase , Nitrato Redutases/metabolismo , Oxazóis/farmacologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/efeitos dos fármacos , Fosforilação , Inibidores de Proteases/farmacologia , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases , Proteínas Quinases/efeitos dos fármacos , Proteínas Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA