Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Mamm Genome ; 32(1): 12-29, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33367954

RESUMO

We investigated the contribution of apoptosis-inducing factor (AIF), a key regulator of mitochondrial biogenesis, in supporting hair growth. We report that pelage abnormalities developed during hair follicle (HF) morphogenesis in Harlequin (Hq) mutant mice. Fragility of the hair cortex was associated with decreased expression of genes encoding structural hair proteins, though key transcriptional regulators of HF development were expressed at normal levels. Notably, Aifm1 (R200 del) knockin males and Aifm1(R200 del)/Hq females showed minor hair defects, despite substantially reduced AIF levels. Furthermore, we cloned the integrated ecotropic provirus of the Aifm1Hq allele. We found that its overexpression in wild-type keratinocyte cell lines led to down-regulation of HF-specific Krt84 and Krtap3-3 genes without altering Aifm1 or epidermal Krt5 expression. Together, our findings imply that pelage paucity in Hq mutant mice is mechanistically linked to severe AIF deficiency and is associated with the expression of retroviral elements that might potentially influence the transcriptional regulation of structural hair proteins.


Assuntos
Alopecia/genética , Alopecia/metabolismo , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/metabolismo , Suscetibilidade a Doenças , Retrovirus Endógenos/genética , Regulação da Expressão Gênica , Mutação , Animais , Biomarcadores , Folículo Piloso/embriologia , Folículo Piloso/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Morfogênese/genética
2.
Glia ; 68(3): 509-527, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31702067

RESUMO

In contrast to humans and other mammals, zebrafish can successfully regenerate and remyelinate central nervous system (CNS) axons following injury. In addition to common myelin proteins found in mammalian myelin, 36K protein is a major component of teleost fish CNS myelin. Although 36K is one of the most abundant proteins in zebrafish brain, its function remains unknown. Here we investigate the function of 36K using translation-blocking Morpholinos. Morphant larvae showed fewer dorsally migrated oligodendrocyte precursor cells as well as upregulation of Notch ligand. A gamma secretase inhibitor, which prevents activation of Notch, could rescue oligodendrocyte precursor cell numbers in 36K morphants, suggesting that 36K regulates initial myelination through inhibition of Notch signaling. Since 36K like other short chain dehydrogenases might act on lipids, we performed thin layer chromatography and mass spectrometry of lipids and found changes in lipid composition in 36K morphant larvae. Altogether, we suggest that during early development 36K regulates membrane lipid composition, thereby altering the amount of transmembrane Notch ligands and the efficiency of intramembrane gamma secretase processing of Notch and thereby influencing oligodendrocyte precursor cell differentiation and further myelination. Further studies on the role of 36K short chain dehydrogenase in oligodendrocyte precursor cell differentiation during remyelination might open up new strategies for remyelination therapies in human patients.


Assuntos
Axônios/metabolismo , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/citologia , Animais , Axônios/patologia , Encéfalo/metabolismo , Células CHO , Diferenciação Celular/fisiologia , Cricetulus , Doenças Desmielinizantes/metabolismo , Humanos , Neurogênese/fisiologia , Peixe-Zebra
3.
Nature ; 493(7431): 187-90, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23235823

RESUMO

A subset of ultraluminous X-ray sources (those with luminosities of less than 10(40) erg s(-1); ref. 1) are thought to be powered by the accretion of gas onto black holes with masses of ∼5-20M cicled dot, probably by means of an accretion disk. The X-ray and radio emission are coupled in such Galactic sources; the radio emission originates in a relativistic jet thought to be launched from the innermost regions near the black hole, with the most powerful emission occurring when the rate of infalling matter approaches a theoretical maximum (the Eddington limit). Only four such maximal sources are known in the Milky Way, and the absorption of soft X-rays in the interstellar medium hinders the determination of the causal sequence of events that leads to the ejection of the jet. Here we report radio and X-ray observations of a bright new X-ray source in the nearby galaxy M 31, whose peak luminosity exceeded 10(39) erg s(-1). The radio luminosity is extremely high and shows variability on a timescale of tens of minutes, arguing that the source is highly compact and powered by accretion close to the Eddington limit onto a black hole of stellar mass. Continued radio and X-ray monitoring of such sources should reveal the causal relationship between the accretion flow and the powerful jet emission.

4.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(7): 734-749, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29653252

RESUMO

The replacement of two consecutive histidine residues by alanine residues in the catalytic center of ceramide synthase 2 in a new transgenic mouse mutant (CerS2 H/A) leads to inactivation of catalytic activity and reduces protein level to 60% of the WT level. We show here by qRT-PCR and transcriptome analyses that several transcripts of genes involved in lipid metabolism and cell division are differentially regulated in livers of CerS2 H/A mice. Thus, very long chain ceramides produced by CerS2 are required for transcriptional regulation of target genes. The hepatocellular carcinomata previously described in old CerS2 KO mice were already present in 8-week-old CerS2 H/A animals and thus are caused by the loss of CerS2 catalytic activity already during early life.


Assuntos
Carcinoma Hepatocelular/genética , Divisão Celular/genética , Metabolismo dos Lipídeos/genética , Neoplasias Hepáticas/genética , Esfingosina N-Aciltransferase/genética , Fatores Etários , Animais , Carcinoma Hepatocelular/patologia , Ceramidas/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Fígado/patologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Esfingosina N-Aciltransferase/metabolismo
5.
J Neurosci ; 35(43): 14501-16, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26511242

RESUMO

Canavan disease (CD) is a severe, lethal leukodystrophy caused by deficiency in aspartoacylase (ASPA), which hydrolyzes N-acetylaspartate (NAA). In the brains of CD patients, NAA accumulates to high millimolar concentrations. The pathology of the disease is characterized by loss of oligodendrocytes and spongy myelin degeneration in the CNS. Whether accumulating NAA, absence of NAA-derived acetate, or absence of any unknown functions of the ASPA enzyme is responsible for the pathology of the disease is not fully understood. We generated ASPA-deficient (Aspa(nur7/nur7)) mice that are also deficient for NAA synthase Nat8L (Nat8L(-/-)/Aspa(nur7/nur7)). These mice have no detectable NAA. Nevertheless, they exhibited normal myelin content, myelin sphingolipid composition, and full reversal of spongy myelin and axonal degeneration. Surprisingly, although pathology was fully reversed, the survival time of the mice was not prolonged. In contrast, Aspa(nur7/nur7) mice with only one intact Nat8L allele accumulated less NAA, developed a less severe pathology, phenotypic improvements, and, importantly, an almost normal survival time. Therefore, inhibition of NAA synthase is a promising therapeutic option for CD. The reduced survival rate of Nat8L(-/-)/Aspa(nur7/nur7) mice, however, indicates that complete inhibition of NAA synthase may bear unforeseeable risks for the patient. Furthermore, we demonstrate that acetate derived from NAA is not essential for myelin lipid synthesis and that loss of NAA-derived acetate does not cause the myelin phenotype of Aspa(nur7/nur7) mice. Our data clearly support the hypothesis that NAA accumulation is the major factor in the development of CD.


Assuntos
Acetiltransferases/genética , Ácido Aspártico/análogos & derivados , Doença de Canavan/patologia , Bainha de Mielina/patologia , Acetiltransferases/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Ácido Aspártico/metabolismo , Axônios/patologia , Comportamento Animal , Doença de Canavan/tratamento farmacológico , Doença de Canavan/genética , Inibidores Enzimáticos/uso terapêutico , Feminino , Genótipo , Gliose/genética , Gliose/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Bainha de Mielina/metabolismo , Degeneração Neural/patologia , Esfingolipídeos/metabolismo , Análise de Sobrevida
6.
J Biol Chem ; 289(14): 9611-22, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24550399

RESUMO

Free Man(7-9)GlcNAc2 is released during the biosynthesis pathway of N-linked glycans or from misfolded glycoproteins during the endoplasmic reticulum-associated degradation process and are reduced to Man5GlcNAc in the cytosol. In this form, free oligosaccharides can be transferred into the lysosomes to be degraded completely. α-Mannosidase (MAN2C1) is the enzyme responsible for the partial demannosylation occurring in the cytosol. It has been demonstrated that the inhibition of MAN2C1 expression induces accumulation of Man(8-9)GlcNAc oligosaccharides and apoptosis in vitro. We investigated the consequences caused by the lack of cytosolic α-mannosidase activity in vivo by the generation of Man2c1-deficient mice. Increased amounts of Man(8-9)GlcNAc oligosaccharides were recognized in all analyzed KO tissues. Histological analysis of the CNS revealed neuronal and glial degeneration with formation of multiple vacuoles in deep neocortical layers and major telencephalic white matter tracts. Enterocytes of the small intestine accumulate mannose-containing saccharides and glycogen particles in their apical cytoplasm as well as large clear vacuoles in retronuclear position. Liver tissue is characterized by groups of hepatocytes with increased content of mannosyl compounds and glycogen, some of them undergoing degeneration by hydropic swelling. In addition, lectin screening showed the presence of mannose-containing saccharides in the epithelium of proximal kidney tubules, whereas scattered glomeruli appeared collapsed or featured signs of fibrosis along Bowman's capsule. Except for a moderate enrichment of mannosyl compounds and glycogen, heterozygous mice were normal, arguing against possible toxic effects of truncated Man2c1. These findings confirm the key role played by Man2c1 in the catabolism of free oligosaccharides.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Citosol/enzimologia , Oligossacarídeos/metabolismo , alfa-Manosidase/metabolismo , Animais , Apoptose/genética , Cápsula Glomerular/enzimologia , Cápsula Glomerular/patologia , Citosol/patologia , Enterócitos/enzimologia , Enterócitos/patologia , Fibrose/enzimologia , Fibrose/genética , Fibrose/patologia , Glicogênio/genética , Glicogênio/metabolismo , Intestino Delgado/enzimologia , Intestino Delgado/patologia , Túbulos Renais Proximais/enzimologia , Túbulos Renais Proximais/patologia , Manose/genética , Manose/metabolismo , Camundongos , Camundongos Knockout , Oligossacarídeos/genética , Telencéfalo/enzimologia , Telencéfalo/patologia , alfa-Manosidase/genética
7.
PLoS Genet ; 7(7): e1002146, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21750683

RESUMO

Gap junction channels are intercellular conduits that allow diffusional exchange of ions, second messengers, and metabolites. Human oligodendrocytes express the gap junction protein connexin47 (Cx47), which is encoded by the GJC2 gene. The autosomal recessive mutation hCx47M283T causes Pelizaeus-Merzbacher-like disease 1 (PMLD1), a progressive leukodystrophy characterized by hypomyelination, retarded motor development, nystagmus, and spasticity. We introduced the human missense mutation into the orthologous position of the mouse Gjc2 gene and inserted the mCx47M282T coding sequence into the mouse genome via homologous recombination in embryonic stem cells. Three-week-old homozygous Cx47M282T mice displayed impaired rotarod performance but unchanged open-field behavior. 10-15-day-old homozygous Cx47M282T and Cx47 null mice revealed a more than 80% reduction in the number of cells participating in glial networks after biocytin injections into oligodendrocytes in sections of corpus callosum. Homozygous expression of mCx47M282T resulted in reduced MBP expression and astrogliosis in the cerebellum of ten-day-old mice which could also be detected in Cx47 null mice of the same age. Three-month-old homozygous Cx47M282T mice exhibited neither altered open-field behavior nor impaired rotarod performance anymore. Adult mCx47M282T expressing mice did not show substantial myelin alterations, but homozygous Cx47M282T mice, additionally deprived of connexin32, which is also expressed in oligodendrocytes, died within six weeks after birth and displayed severe myelin defects accompanied by astrogliosis and activated microglia. These results strongly suggest that PMLD1 is caused by the loss of Cx47 channel function that results in impaired panglial coupling in white matter tissue.


Assuntos
Conexinas , Mutação de Sentido Incorreto/genética , Oligodendroglia/metabolismo , Doença de Pelizaeus-Merzbacher , Animais , Conexinas/deficiência , Conexinas/genética , Conexinas/metabolismo , Corpo Caloso/metabolismo , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Humanos , Canais Iônicos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Bainha de Mielina/metabolismo , Doença de Pelizaeus-Merzbacher/genética , Doença de Pelizaeus-Merzbacher/metabolismo , Doença de Pelizaeus-Merzbacher/patologia , Células-Tronco/metabolismo , Proteína beta-1 de Junções Comunicantes
8.
J Biol Chem ; 287(50): 41888-902, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23074226

RESUMO

Ceramide synthase 1 (CerS1) catalyzes the synthesis of C18 ceramide and is mainly expressed in the brain. Custom-made antibodies to a peptide from the C-terminal region of the mouse CerS1 protein yielded specific immunosignals in neurons but no other cell types of wild type brain, but the CerS1 protein was not detected in CerS1-deficient mouse brains. To elucidate the biological function of CerS1-derived sphingolipids in the brain, we generated CerS1-deficient mice by introducing a targeted mutation into the coding region of the cers1 gene. General deficiency of CerS1 in mice caused a foliation defect, progressive shrinkage, and neuronal apoptosis in the cerebellum. Mass spectrometric analyses revealed up to 60% decreased levels of gangliosides in cerebellum and forebrain. Expression of myelin-associated glycoprotein was also decreased by about 60% in cerebellum and forebrain, suggesting that interaction and stabilization of oligodendrocytic myelin-associated glycoprotein by neuronal gangliosides is due to the C18 acyl membrane anchor of CerS1-derived precursor ceramides. A behavioral analysis of CerS1-deficient mice yielded functional deficits including impaired exploration of novel objects, locomotion, and motor coordination. Our results reveal an essential function of CerS1-derived ceramide in the regulation of cerebellar development and neurodevelopmentally regulated behavior.


Assuntos
Cerebelo/metabolismo , Gangliosídeos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glicoproteína Associada a Mielina/biossíntese , Oligodendroglia/metabolismo , Oxirredutases/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular , Ceramidas/genética , Ceramidas/metabolismo , Cerebelo/citologia , Cerebelo/embriologia , Gangliosídeos/genética , Camundongos , Camundongos Mutantes , Glicoproteína Associada a Mielina/genética , Neurônios/citologia , Neurônios/metabolismo , Oligodendroglia/citologia , Oxirredutases/genética , Prosencéfalo/citologia , Prosencéfalo/embriologia
9.
Biochim Biophys Acta ; 1822(7): 1137-46, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22465033

RESUMO

Most lysosomal storage diseases are caused by defects in genes encoding for acidic hydrolases. Deficiency of an enzyme involved in the catabolic pathway of N-linked glycans leads to the accumulation of the respective substrate and consequently to the onset of a specific storage disorder. Di-N-acetylchitobiase and core specific α1-6mannosidase represent the only exception. In fact, to date no lysosomal disease has been correlated to the deficiency of these enzymes. We generated di-N-acetylchitobiase-deficient mice by gene targeting of the Ctbs gene in murine embryonic stem cells. Accumulation of Man2GlcNAc2 and Man3GlcNAc2 was evaluated in all analyzed tissues and the tetrasaccharide was detected in urines. Multilamellar inclusion bodies reminiscent of polar lipids were present in epithelia of a scattered subset of proximal tubules in the kidney. Less constantly, enlarged Kupffer cells were observed in liver, filled with phagocytic material resembling partly digested red blood cells. These findings confirm an important role for lysosomal di-N-acetylchitobiase in glycans degradation and suggest that its deficiency could be the cause of a not yet described lysosomal storage disease.


Assuntos
Acetilglucosaminidase/metabolismo , Dissacarídeos/metabolismo , Doenças por Armazenamento dos Lisossomos/enzimologia , alfa-Manosidase/metabolismo , Acetilglucosaminidase/análise , Acetilglucosaminidase/deficiência , Acetilglucosaminidase/genética , Animais , Dissacarídeos/análise , Células-Tronco Embrionárias , Marcação de Genes , Túbulos Renais Proximais/enzimologia , Células de Kupffer/enzimologia , Fígado/enzimologia , Lisossomos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligossacarídeos/metabolismo , Oligossacarídeos/urina , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Distribuição Tecidual , alfa-Manosidase/análise , beta-Glucosidase/análise
10.
Hum Mol Genet ; 20(14): 2760-9, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21515587

RESUMO

Arylsulfatase A (ASA) catalyzes the desulfation of sulfatide, a major lipid component of myelin. Inherited functional deficiencies of ASA cause the lysosomal storage disease (LSD) metachromatic leukodystrophy (MLD), which is characterized by intralysosomal accumulation of sulfatide, progressive neurological symptoms and early death. Enzyme replacement therapy (ERT) using intravenous injection of active enzyme is a treatment option for many LSDs as exogenous lysosomal enzymes are delivered to lysosomes of patient's cells via receptor-mediated endocytosis. Efficient treatment of MLD and other LSDs with central nervous system (CNS) involvement is, however, hampered by the blood-brain barrier (BBB), which limits transfer of therapeutic enzymes from the circulation to the brain parenchyma. To bypass the BBB, we infused recombinant human ASA (rhASA) by implanted miniature pumps into the cerebrospinal fluid (CSF) of a conventional and a novel, genetically aggravated ASA knockout mouse model of MLD. rhASA continuously delivered to the lateral ventricle for 4 weeks penetrated the brain parenchyma and was targeted to the lysosomes of brain cells. Histological analysis revealed complete reversal of lysosomal storage in the infused hemisphere. rhASA concentrations and sulfatide clearance declined with increasing distance from the infusion site. Correction of the ataxic gait indicated reversal of central nervous system dysfunctions. The profound histopathological and functional improvements, the requirement of low enzyme doses and the absence of immunological side effects suggest intracerebroventricular ERT to be a promising treatment option for MLD and other LSDs with prevailing CNS disease.


Assuntos
Cerebrosídeo Sulfatase/uso terapêutico , Terapia de Reposição de Enzimas/métodos , Infusões Intraventriculares , Leucodistrofia Metacromática/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico , Recuperação de Função Fisiológica/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Humanos , Leucodistrofia Metacromática/enzimologia , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/patologia , Camundongos , Camundongos Knockout , Fatores de Tempo
11.
Histochem Cell Biol ; 140(5): 533-47, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23591958

RESUMO

Ceramide synthase 2 (CerS2) catalyzes the synthesis of dihydroceramides from dihydrosphingosine and very long fatty acyl (C22-C24)-CoAs. CerS2-deficient (gene trap) mice were reported to exhibit myelin and behavioral abnormalities, associated with the expression of CerS2 in oligodendrocytes and neurons based on expression of lacZ reporter cDNA instead of the cers2 gene in these mice. In order to clarify the cell-type-specific expression of CerS2 protein, we have raised antibodies that specifically recognize the glycosylated and non-glycosylated CerS2 protein in wild-type but not in CerS2-deficient mouse tissues. In early postnatal, juvenile and adult mouse brain, the new antibodies detect CerS2 protein only in oligodendrocytes but not in neurons, suggesting that the gene trap vector in CerS2-deficient mice led to ectopic expression of the lacZ reporter gene in neurons. In liver, the CerS2 protein is expressed in hepatocytes but not in Ito cells or Kupffer cells. We conclude that the behavioral abnormalities observed in CerS2-deficient mice originate primarily in oligodendrocytes and not in neurons. The identification of specific cell types in which CerS2 protein is expressed is prerequisite to further mechanistic characterization of phenotypic abnormalities exhibited by CerS2-deficient mice. The amount of CerS2 protein detected in different tissues by immunoblot analyses does not strictly correspond to the activity of the CerS2 enzyme. Disproportional results are likely due to post-translational regulation of the CerS2 protein.


Assuntos
Encéfalo/enzimologia , Fibroblastos/enzimologia , Fígado/enzimologia , Esfingosina N-Aciltransferase/análise , Esfingosina N-Aciltransferase/biossíntese , Baço/enzimologia , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Imuno-Histoquímica , Fígado/citologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos , Esfingosina N-Aciltransferase/deficiência , Baço/citologia , Baço/metabolismo
12.
J Biol Chem ; 286(29): 25922-34, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21628453

RESUMO

2-Hydroxylated fatty acid (HFA)-containing sphingolipids are abundant in mammalian skin and are believed to play a role in the formation of the epidermal barrier. Fatty acid 2-hydroxylase (FA2H), required for the synthesis of 2-hydroxylated sphingolipids in various organs, is highly expressed in skin, and previous in vitro studies demonstrated its role in the synthesis of HFA sphingolipids in human keratinocytes. Unexpectedly, however, mice deficient in FA2H did not show significant changes in their epidermal HFA sphingolipids. Expression of FA2H in murine skin was restricted to the sebaceous glands, where it was required for synthesis of 2-hydroxylated glucosylceramide and a fraction of type II wax diesters. Absence of FA2H resulted in hyperproliferation of sebocytes and enlarged sebaceous glands during hair follicle morphogenesis and anagen (active growth phase) in adult mice. This was accompanied by a significant up-regulation of the epidermal growth factor receptor ligand epigen in sebocytes. Loss of FA2H significantly altered the composition and physicochemical properties of sebum, which often blocked the hair canal, apparently causing a delay in the hair fiber exit. Furthermore, mice lacking FA2H displayed a cycling alopecia with hair loss in telogen. These results underline the importance of the sebaceous glands and suggest a role of specific sebaceous gland or sebum lipids, synthesized by FA2H, in the hair follicle homeostasis.


Assuntos
Amidoidrolases/genética , Amidoidrolases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Cabelo/crescimento & desenvolvimento , Glândulas Sebáceas/metabolismo , Sebo/metabolismo , Alopecia/metabolismo , Alopecia/patologia , Amidoidrolases/deficiência , Animais , Proliferação de Células , Epiderme/anatomia & histologia , Epiderme/metabolismo , Cabelo/enzimologia , Masculino , Camundongos , Tamanho do Órgão , Especificidade de Órgãos , Glândulas Sebáceas/anatomia & histologia , Glândulas Sebáceas/citologia , Glândulas Sebáceas/enzimologia , Sebo/enzimologia , Esfingolipídeos/química , Esfingolipídeos/metabolismo , Temperatura de Transição
13.
EMBO J ; 27(1): 224-33, 2008 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18059472

RESUMO

Although soluble oligomeric and protofibrillar assemblies of Abeta-amyloid peptide cause synaptotoxicity and potentially contribute to Alzheimer's disease (AD), the role of mature Abeta-fibrils in the amyloid plaques remains controversial. A widely held view in the field suggests that the fibrillization reaction proceeds 'forward' in a near-irreversible manner from the monomeric Abeta peptide through toxic protofibrillar intermediates, which subsequently mature into biologically inert amyloid fibrils that are found in plaques. Here, we show that natural lipids destabilize and rapidly resolubilize mature Abeta amyloid fibers. Interestingly, the equilibrium is not reversed toward monomeric Abeta but rather toward soluble amyloid protofibrils. We characterized these 'backward' Abeta protofibrils generated from mature Abeta fibers and compared them with previously identified 'forward' Abeta protofibrils obtained from the aggregation of fresh Abeta monomers. We find that backward protofibrils are biochemically and biophysically very similar to forward protofibrils: they consist of a wide range of molecular masses, are toxic to primary neurons and cause memory impairment and tau phosphorylation in mouse. In addition, they diffuse rapidly through the brain into areas relevant to AD. Our findings imply that amyloid plaques are potentially major sources of soluble toxic Abeta-aggregates that could readily be activated by exposure to biological lipids.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Aprendizagem/fisiologia , Lipídeos/fisiologia , Neurotoxinas/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/administração & dosagem , Animais , Encéfalo/patologia , Células Cultivadas , Gangliosídeo G(M1)/fisiologia , Injeções Intraventriculares , Aprendizagem/efeitos dos fármacos , Lipídeos/administração & dosagem , Camundongos , Fragmentos de Peptídeos/administração & dosagem , Esfingolipídeos/fisiologia
14.
Nature ; 475(7356): 303-4, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21776072
15.
Nature ; 439(7072): 45-7, 2006 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-16397491

RESUMO

Gamma-rays from radioactive 26Al (half-life approximately 7.2 x 10(5) years) provide a 'snapshot' view of continuing nucleosynthesis in the Galaxy. The Galaxy is relatively transparent to such gamma-rays, and emission has been found concentrated along its plane. This led to the conclusion that massive stars throughout the Galaxy dominate the production of 26Al. On the other hand, meteoritic data show evidence for locally produced 26Al, perhaps from spallation reactions in the protosolar disk. Furthermore, prominent gamma-ray emission from the Cygnus region suggests that a substantial fraction of Galactic 26Al could originate in localized star-forming regions. Here we report high spectral resolution measurements of 26Al emission at 1808.65 keV, which demonstrate that the 26Al source regions corotate with the Galaxy, supporting its Galaxy-wide origin. We determine a present-day equilibrium mass of 2.8 (+/- 0.8) solar masses of 26Al. We use this to determine that the frequency of core collapse (that is, type Ib/c and type II) supernovae is 1.9 (+/- 1.1) events per century.

16.
J Biol Chem ; 284(48): 33549-60, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19801672

RESUMO

(Dihydro)ceramide synthase 2 (cers2, formerly called lass2) is the most abundantly expressed member of the ceramide synthase gene family, which includes six isoforms in mice. CERS2 activity has been reported to be specific toward very long fatty acid residues (C22-C24). In order to study the biological role of CERS2, we have inactivated its coding region in transgenic mice using gene-trapped embryonic stem cells that express lacZ reporter DNA under control of the cers2 promoter. The resulting mice lack ceramide synthase activity toward C24:1 in the brain as well as the liver and show only very low activity toward C18:0-C22:0 in liver and reduced activity toward C22:0 residues in the brain. In addition, these mice exhibit strongly reduced levels of ceramide species with very long fatty acid residues (>or=C22) in the liver, kidney, and brain. From early adulthood on, myelin stainability is progressively lost, biochemically accompanied by about 50% loss of compacted myelin and 80% loss of myelin basic protein. Starting around 9 months, both the medullary tree and the internal granular layer of the cerebellum show significant signs of degeneration associated with the formation of microcysts. Predominantly in the peripheral nervous system, we observed vesiculation and multifocal detachment of the inner myelin lamellae in about 20% of the axons. Beyond 7 months, the CERS2-deficient mice developed hepatocarcinomas with local destruction of tissue architecture and discrete gaps in renal parenchyma. Our results indicate that CERS2 activity supports different biological functions: maintenance of myelin, stabilization of the cerebellar as well as renal histological architecture, and protection against hepatocarcinomas.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Bainha de Mielina/patologia , Oxirredutases/deficiência , Esfingosina N-Aciltransferase/metabolismo , Degenerações Espinocerebelares/patologia , Animais , Carcinoma Hepatocelular/enzimologia , Ceramidas/metabolismo , Feminino , Immunoblotting , Rim/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/enzimologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Bainha de Mielina/enzimologia , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Oxirredutases/genética , Oxirredutases/metabolismo , Esfingolipídeos/metabolismo , Esfingomielinas/metabolismo , Esfingosina N-Aciltransferase/genética , Degenerações Espinocerebelares/enzimologia
17.
J Biol Chem ; 284(52): 36024-36033, 2009 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-19864413

RESUMO

Alcadeins (Alcs) constitute a family of neuronal type I membrane proteins, designated Alc(alpha), Alc(beta), and Alc(gamma). The Alcs express in neurons dominantly and largely colocalize with the Alzheimer amyloid precursor protein (APP) in the brain. Alcs and APP show an identical function as a cargo receptor of kinesin-1. Moreover, proteolytic processing of Alc proteins appears highly similar to that of APP. We found that APP alpha-secretases ADAM 10 and ADAM 17 primarily cleave Alc proteins and trigger the subsequent secondary intramembranous cleavage of Alc C-terminal fragments by a presenilin-dependent gamma-secretase complex, thereby generating "APP p3-like" and non-aggregative Alc peptides (p3-Alcs). We determined the complete amino acid sequence of p3-Alc(alpha), p3-Alc(beta), and p3-Alc(gamma), whose major species comprise 35, 37, and 31 amino acids, respectively, in human cerebrospinal fluid. We demonstrate here that variant p3-Alc C termini are modulated by FAD-linked presenilin 1 mutations increasing minor beta-amyloid species Abeta42, and these mutations alter the level of minor p3-Alc species. However, the magnitudes of C-terminal alteration of p3-Alc(alpha), p3-Alc(beta), and p3-Alc(gamma) were not equivalent, suggesting that one type of gamma-secretase dysfunction does not appear in the phenotype equivalently in the cleavage of type I membrane proteins. Because these C-terminal alterations are detectable in human cerebrospinal fluid, the use of a substrate panel, including Alcs and APP, may be effective to detect gamma-secretase dysfunction in the prepathogenic state of Alzheimer disease subjects.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Peptídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM10 , Proteína ADAM17 , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular , Humanos , Proteínas de Membrana/genética , Camundongos , Peptídeos/genética , Nexinas de Proteases , Receptores de Superfície Celular/genética
18.
Nature ; 426(6963): 157-9, 2003 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-14614499

RESUMO

The association of a supernova with GRB030329 strongly supports the 'collapsar' model of gamma-ray bursts, where a relativistic jet forms after the progenitor star collapses. Such jets cannot be spatially resolved because gamma-ray bursts lie at cosmological distances; their existence is instead inferred from 'breaks' in the light curves of the afterglows, and from the theoretical desire to reduce the estimated total energy of the burst by proposing that most of it comes out in narrow beams. Temporal evolution of the polarization of the afterglows may provide independent evidence for the jet structure of the relativistic outflow. Small-level polarization ( approximately 1-3 per cent) has been reported for a few bursts, but its temporal evolution has yet to be established. Here we report polarimetric observations of the afterglow of GRB030329. We establish the polarization light curve, detect sustained polarization at the per cent level, and find significant variability. The data imply that the afterglow magnetic field has a small coherence length and is mostly random, probably generated by turbulence, in contrast with the picture arising from the high polarization detected in the prompt gamma-rays from GRB021206 (ref. 18).

19.
Mol Biol Cell ; 18(1): 176-88, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17079736

RESUMO

Signaling via the epidermal growth factor receptor (EGFR), which has critical roles in development and diseases such as cancer, is regulated by proteolytic shedding of its membrane-tethered ligands. Sheddases for EGFR-ligands are therefore key signaling switches in the EGFR pathway. Here, we determined which ADAMs (a disintegrin and metalloprotease) can shed various EGFR-ligands, and we analyzed the regulation of EGFR-ligand shedding by two commonly used stimuli, phorbol esters and calcium influx. Phorbol esters predominantly activate ADAM17, thereby triggering a burst of shedding of EGFR-ligands from a late secretory pathway compartment. Calcium influx stimulates ADAM10, requiring its cytoplasmic domain. However, calcium influx-stimulated shedding of transforming growth factor alpha and amphiregulin does not require ADAM17, even though ADAM17 is essential for phorbol ester-stimulated shedding of these EGFR-ligands. This study provides new insight into the machinery responsible for EGFR-ligand release and thus EGFR signaling and demonstrates that dysregulated EGFR-ligand shedding may be caused by increased expression of constitutively active sheddases or activation of different sheddases by distinct stimuli.


Assuntos
Proteínas ADAM/metabolismo , Cálcio/metabolismo , Receptores ErbB/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Proteínas ADAM/química , Proteínas ADAM/deficiência , Proteína ADAM10 , Proteína ADAM17 , Anfirregulina , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/deficiência , Animais , Betacelulina , Células COS , Calmodulina/antagonistas & inibidores , Chlorocebus aethiops , Família de Proteínas EGF , Fator de Crescimento Epidérmico/metabolismo , Epirregulina , Glicoproteínas/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ionóforos/farmacologia , Ligantes , Proteínas de Membrana/química , Proteínas de Membrana/deficiência , Camundongos , Estrutura Terciária de Proteína/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Fator de Crescimento Transformador alfa/metabolismo
20.
J Neurosci ; 28(39): 9741-54, 2008 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-18815260

RESUMO

Sphingolipids containing 2-hydroxylated fatty acids are among the most abundant lipid components of the myelin sheath and therefore are thought to play an important role in formation and function of myelin. To prove this hypothesis, we generated mice lacking a functional fatty acid 2-hydroxylase (FA2H) gene. FA2H-deficient (FA2H(-/-)) mice lacked 2-hydroxylated sphingolipids in the brain and in peripheral nerves. In contrast, nonhydroxylated galactosylceramide was increased in FA2H(-/-) mice. However, oligodendrocyte differentiation examined by in situ hybridization with cRNA probes for proteolipid protein and PDGFalpha receptor and the time course of myelin formation were not altered in FA2H(-/-) mice compared with wild-type littermates. Nerve conduction velocity measurements of sciatic nerves revealed no significant differences between FA2H(-/-) and wild-type mice. Moreover, myelin of FA2H(-/-) mice up to 5 months of age appeared normal at the ultrastructural level, in the CNS and peripheral nervous system. Myelin thickness and g-ratios were normal in FA2H(-/-) mice. Aged (18-month-old) FA2H(-/-) mice, however, exhibited scattered axonal and myelin sheath degeneration in the spinal cord and an even more pronounced loss of stainability of myelin sheaths in sciatic nerves. These results show that structurally and functionally normal myelin can be formed in the absence of 2-hydroxylated sphingolipids but that its long-term maintenance is strikingly impaired. Because axon degeneration appear to start rather early with respect to myelin degenerations, these lipids might be required for glial support of axon function.


Assuntos
Amidoidrolases/deficiência , Axônios/fisiologia , Bainha de Mielina/patologia , Degeneração Neural/genética , Degeneração Neural/patologia , Esfingolipídeos/deficiência , Fatores Etários , Animais , Animais Recém-Nascidos , Axônios/ultraestrutura , Comportamento Animal , Diferenciação Celular/genética , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Comportamento Exploratório , Regulação da Expressão Gênica no Desenvolvimento/genética , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Condução Nervosa/fisiologia , Oligodendroglia/fisiologia , Nervo Óptico/metabolismo , Nervo Óptico/fisiopatologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA