Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(7): 076002, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37656857

RESUMO

Superfluid helium nanodroplets are an ideal environment for the formation of metastable, self-organized dopant nanostructures. However, the presence of vortices often hinders their formation. Here, we demonstrate the generation of vortex-free helium nanodroplets and explore the size range in which they can be produced. From x-ray diffraction images of xenon-doped droplets, we identify that single compact structures, assigned to vortex-free aggregation, prevail up to 10^{8} atoms per droplet. This finding builds the basis for exploring the assembly of far-from-equilibrium nanostructures at low temperatures.

2.
Phys Rev Lett ; 128(8): 084501, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35275677

RESUMO

While the heat transfer and the flow dynamics in a cylindrical Rayleigh-Bénard (RB) cell are rather independent of the aspect ratio Γ (diameter/height) for large Γ, a small-Γ cell considerably stabilizes the flow and thus affects the heat transfer. Here, we first theoretically and numerically show that the critical Rayleigh number for the onset of convection at given Γ follows Ra_{c,Γ}∼Ra_{c,∞}(1+CΓ^{-2})^{2}, with C≲1.49 for Oberbeck-Boussinesq (OB) conditions. We then show that, in a broad aspect ratio range (1/32)≤Γ≤32, the rescaling Ra→Ra_{ℓ}≡Ra[Γ^{2}/(C+Γ^{2})]^{3/2} collapses various OB numerical and almost-OB experimental heat transport data Nu(Ra,Γ). Our findings predict the Γ dependence of the onset of the ultimate regime Ra_{u,Γ}∼[Γ^{2}/(C+Γ^{2})]^{-3/2} in the OB case. This prediction is consistent with almost-OB experimental results (which only exist for Γ=1, 1/2, and 1/3) for the transition in OB RB convection and explains why, in small-Γ cells, much larger Ra (namely, by a factor Γ^{-3}) must be achieved to observe the ultimate regime.

3.
J Chem Phys ; 156(4): 041102, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35105059

RESUMO

Advancements in x-ray free-electron lasers on producing ultrashort, ultrabright, and coherent x-ray pulses enable single-shot imaging of fragile nanostructures, such as superfluid helium droplets. This imaging technique gives unique access to the sizes and shapes of individual droplets. In the past, such droplet characteristics have only been indirectly inferred by ensemble averaging techniques. Here, we report on the size distributions of both pure and doped droplets collected from single-shot x-ray imaging and produced from the free-jet expansion of helium through a 5 µm diameter nozzle at 20 bars and nozzle temperatures ranging from 4.2 to 9 K. This work extends the measurement of large helium nanodroplets containing 109-1011 atoms, which are shown to follow an exponential size distribution. Additionally, we demonstrate that the size distributions of the doped droplets follow those of the pure droplets at the same stagnation condition but with smaller average sizes.

4.
J Synchrotron Radiat ; 28(Pt 2): 576-587, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33650570

RESUMO

The X-ray free-electron lasers that became available during the last decade, like the European XFEL (EuXFEL), place high demands on their instrumentation. Especially at low photon energies below 1 keV, detectors with high sensitivity, and consequently low noise and high quantum efficiency, are required to enable facility users to fully exploit the scientific potential of the photon source. A 1-Megapixel pnCCD detector with a 1024 × 1024 pixel format has been installed and commissioned for imaging applications at the Nano-Sized Quantum System (NQS) station of the Small Quantum System (SQS) instrument at EuXFEL. The instrument is currently operating in the energy range between 0.5 and 3 keV and the NQS station is designed for investigations of the interaction of intense FEL pulses with clusters, nano-particles and small bio-molecules, by combining photo-ion and photo-electron spectroscopy with coherent diffraction imaging techniques. The core of the imaging detector is a pn-type charge coupled device (pnCCD) with a pixel pitch of 75 µm × 75 µm. Depending on the experimental scenario, the pnCCD enables imaging of single photons thanks to its very low electronic noise of 3 e- and high quantum efficiency. Here an overview on the EuXFEL pnCCD detector and the results from the commissioning and first user operation at the SQS experiment in June 2019 are presented. The detailed descriptions of the detector design and capabilities, its implementation at EuXFEL both mechanically and from the controls side as well as important data correction steps aim to provide useful background for users planning and analyzing experiments at EuXFEL and may serve as a benchmark for comparing and planning future endstations at other FELs.

5.
Langmuir ; 37(7): 2322-2333, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33544605

RESUMO

In the search for more sustainable alternatives to the chemical reagents currently used in froth flotation, the present work offers further insights into the behavior of functionalized cellulose nanocrystals as mineral hydrophobization agents. The study corroborates that hexylamine cellulose nanocrystals (HACs) are an efficient collector for the flotation of quartz and also identifies some particular characteristics as a result of their colloidal nature, as opposed to the water-soluble reagents conventionally used. To investigate the individual and collective effects of the frother and HACs on the attachment of particles and air bubbles, an automated contact timer apparatus was used. This induction timer measures particle-bubble attachment probabilities (Patt) without the influence of macroscopic factors present in typical flotation experiments. This allowed the study of the combined influence of nanocellulose and frother concentration on Patt for the first time. While HACs readily adsorb on quartz modifying its wettability, the presence of a frother leads to a drastic reduction in Patt up to 70%. The improved recovery of quartz in flotation cells might thus be attributed to froth stabilization by HACs, perhaps acting as a Pickering foam stabilizer. Among the main findings, a tendency of HACs to form mineral agglomerates was identified and further explained using the extended DLVO theory in combination with measured adsorption rates in a quartz crystal microbalance. Therefore, this study distinguishes for the first time the antagonistic effect of frothers on Patt and their synergies with HACs on the stabilization of orthokinetic froths through the hydrophobization mechanism unlike those of typical water-soluble collectors.

6.
J Synchrotron Radiat ; 26(Pt 5): 1612-1620, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490151

RESUMO

The lattice parameters and unit-cell orientation of an SrLaAlO4 crystal have been determined by means of energy-dispersive X-ray Laue diffraction (EDLD) using a pnCCD detector coupled to a columnar structure CsI(Tl) scintillator in the energy range between 40 and 130 keV. By exploiting the high quantum efficiency (QE) achieved by this combined detection system for hard X-rays, a large number of Bragg reflections could be recorded by the relatively small detector area, allowing accurate and fast determination of the lattice parameters and the moduli of the structure factors. The experiment was performed on the energy-dispersive diffraction (EDDI) beamline at the BESSY II synchrotron using a pnCCD detector with 128 × 128 pixels. Since the energies and positions of the Laue peaks can be recorded simultaneously by the pnCCD system, the tetragonal structure of the investigated specimen was determined without any prior information. The unit-cell parameters and the angles between the lattice vectors were evaluated with an accuracy of better than 0.7%, while the structure-factor moduli of the reflections were determined with a mean deviation of 2.5% relative to the theoretical values.


Assuntos
Monitoramento de Radiação/instrumentação , Espectrometria por Raios X/instrumentação , Difração de Raios X/instrumentação , Síncrotrons , Raios X
7.
J Synchrotron Radiat ; 25(Pt 5): 1529-1540, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179194

RESUMO

The non-monochromatic beamline BL1 at the FLASH free-electron laser facility at DESY was upgraded with new transport and focusing optics, and a new permanent end-station, CAMP, was installed. This multi-purpose instrument is optimized for electron- and ion-spectroscopy, imaging and pump-probe experiments at free-electron lasers. It can be equipped with various electron- and ion-spectrometers, along with large-area single-photon-counting pnCCD X-ray detectors, thus enabling a wide range of experiments from atomic, molecular, and cluster physics to material and energy science, chemistry and biology. Here, an overview of the layout, the beam transport and focusing capabilities, and the experimental possibilities of this new end-station are presented, as well as results from its commissioning.

8.
Nature ; 470(7332): 73-7, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21293373

RESUMO

X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200 nm to 2 µm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.


Assuntos
Cristalografia por Raios X/métodos , Nanopartículas/química , Nanotecnologia/métodos , Complexo de Proteína do Fotossistema I/química , Cristalografia por Raios X/instrumentação , Lasers , Modelos Moleculares , Nanotecnologia/instrumentação , Conformação Proteica , Fatores de Tempo , Raios X
9.
Nat Methods ; 9(3): 263-5, 2012 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-22286383

RESUMO

X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.


Assuntos
Cristalografia por Raios X/métodos , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Ligação Proteica , Conformação Proteica/efeitos da radiação , Raios X
10.
Nat Methods ; 9(3): 259-62, 2012 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-22286384

RESUMO

Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo-grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology.


Assuntos
Cristalografia por Raios X/métodos , Cristalografia/métodos , Proteínas/química , Proteínas/ultraestrutura , Ligação Proteica/efeitos da radiação , Conformação Proteica/efeitos da radiação , Proteínas/efeitos da radiação , Solubilidade/efeitos da radiação , Raios X
11.
Phys Rev Lett ; 114(9): 098102, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793853

RESUMO

We present a proof-of-concept three-dimensional reconstruction of the giant mimivirus particle from experimentally measured diffraction patterns from an x-ray free-electron laser. Three-dimensional imaging requires the assembly of many two-dimensional patterns into an internally consistent Fourier volume. Since each particle is randomly oriented when exposed to the x-ray pulse, relative orientations have to be retrieved from the diffraction data alone. We achieve this with a modified version of the expand, maximize and compress algorithm and validate our result using new methods.


Assuntos
Imageamento Tridimensional/métodos , Mimiviridae/ultraestrutura , Difração de Raios X/métodos , Algoritmos , Elétrons , Lasers , Difração de Raios X/instrumentação
12.
Opt Express ; 22(3): 2497-510, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663542

RESUMO

The first hard X-ray laser, the Linac Coherent Light Source (LCLS), produces 120 shots per second. Particles injected into the X-ray beam are hit randomly and in unknown orientations by the extremely intense X-ray pulses, where the femtosecond-duration X-ray pulses diffract from the sample before the particle structure is significantly changed even though the sample is ultimately destroyed by the deposited X-ray energy. Single particle X-ray diffraction experiments generate data at the FEL repetition rate, resulting in more than 400,000 detector readouts in an hour, the data stream during an experiment contains blank frames mixed with hits on single particles, clusters and contaminants. The diffraction signal is generally weak and it is superimposed on a low but continually fluctuating background signal, originating from photon noise in the beam line and electronic noise from the detector. Meanwhile, explosion of the sample creates fragments with a characteristic signature. Here, we describe methods based on rapid image analysis combined with ion Time-of-Flight (ToF) spectroscopy of the fragments to achieve an efficient, automated and unsupervised sorting of diffraction data. The studies described here form a basis for the development of real-time frame rejection methods, e.g. for the European XFEL, which is expected to produce 100 million pulses per hour.


Assuntos
Algoritmos , Inteligência Artificial , Interpretação de Imagem Assistida por Computador/métodos , Teste de Materiais/métodos , Nanopartículas/ultraestrutura , Reconhecimento Automatizado de Padrão/métodos , Difração de Raios X/métodos
13.
Light Sci Appl ; 13(1): 15, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216563

RESUMO

The idea of using ultrashort X-ray pulses to obtain images of single proteins frozen in time has fascinated and inspired many. It was one of the arguments for building X-ray free-electron lasers. According to theory, the extremely intense pulses provide sufficient signal to dispense with using crystals as an amplifier, and the ultrashort pulse duration permits capturing the diffraction data before the sample inevitably explodes. This was first demonstrated on biological samples a decade ago on the giant mimivirus. Since then, a large collaboration has been pushing the limit of the smallest sample that can be imaged. The ability to capture snapshots on the timescale of atomic vibrations, while keeping the sample at room temperature, may allow probing the entire conformational phase space of macromolecules. Here we show the first observation of an X-ray diffraction pattern from a single protein, that of Escherichia coli GroEL which at 14 nm in diameter is the smallest biological sample ever imaged by X-rays, and demonstrate that the concept of diffraction before destruction extends to single proteins. From the pattern, it is possible to determine the approximate orientation of the protein. Our experiment demonstrates the feasibility of ultrafast imaging of single proteins, opening the way to single-molecule time-resolved studies on the femtosecond timescale.

14.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 5): 838-42, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23633593

RESUMO

X-ray free-electron lasers (FELs) enable crystallographic data collection using extremely bright femtosecond pulses from microscopic crystals beyond the limitations of conventional radiation damage. This diffraction-before-destruction approach requires a new crystal for each FEL shot and, since the crystals cannot be rotated during the X-ray pulse, data collection requires averaging over many different crystals and a Monte Carlo integration of the diffraction intensities, making the accurate determination of structure factors challenging. To investigate whether sufficient accuracy can be attained for the measurement of anomalous signal, a large data set was collected from lysozyme microcrystals at the newly established `multi-purpose spectroscopy/imaging instrument' of the SPring-8 Ångstrom Compact Free-Electron Laser (SACLA) at RIKEN Harima. Anomalous difference density maps calculated from these data demonstrate that serial femtosecond crystallography using a free-electron laser is sufficiently accurate to measure even the very weak anomalous signal of naturally occurring S atoms in a protein at a photon energy of 7.3 keV.


Assuntos
Cristalografia por Raios X/métodos , Lasers , Conformação Proteica , Enxofre/química , Cristalografia por Raios X/instrumentação , Cisteína/química , Modelos Moleculares , Muramidase/química
15.
Opt Express ; 21(10): 12385-94, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23736456

RESUMO

Characterizing intense, focused x-ray free electron laser (FEL) pulses is crucial for their use in diffractive imaging. We describe how the distribution of average phase tilts and intensities on hard x-ray pulses with peak intensities of 10(21) W/m(2) can be retrieved from an ensemble of diffraction patterns produced by 70 nm-radius polystyrene spheres, in a manner that mimics wavefront sensors. Besides showing that an adaptive geometric correction may be necessary for diffraction data from randomly injected sample sources, our paper demonstrates the possibility of collecting statistics on structured pulses using only the diffraction patterns they generate and highlights the imperative to study its impact on single-particle diffractive imaging.


Assuntos
Aerossóis/análise , Aerossóis/química , Lasers , Fotometria/métodos , Refratometria/métodos , Ressonância de Plasmônio de Superfície/métodos , Raios X , Elétrons , Desenho de Equipamento , Análise de Falha de Equipamento , Microesferas
16.
Opt Express ; 21(23): 28729-42, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514385

RESUMO

Single shot diffraction imaging experiments via X-ray free-electron lasers can generate as many as hundreds of thousands of diffraction patterns of scattering objects. Recovering the real space contrast of a scattering object from these patterns currently requires a reconstruction process with user guidance in a number of steps, introducing severe bottlenecks in data processing. We present a series of measures that replace user guidance with algorithms that reconstruct contrasts in an unsupervised fashion. We demonstrate the feasibility of automating the reconstruction process by generating hundreds of contrasts obtained from soot particle diffraction experiments.

17.
ACS Sustain Chem Eng ; 11(45): 16176-16184, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38022739

RESUMO

The extraction of various minerals is commonly conducted through froth flotation, which is a versatile separation method in mineral processing. In froth flotation, depressants are employed to improve the flotation selectivity by modifying the wettability of the minerals and reducing their natural or induced floatability. However, the environmental impact of many current flotation chemicals poses a challenge to the sustainability and selectivity of the ore beneficiation processes. To mitigate this issue, cellulose, particularly nanocelluloses, has been explored as a potential alternative to promote sustainable mineral processing. This study focused on silylated cellulose nanocrystals (CNCs) as biodepressants for sulfide minerals in froth flotation. CNCs containing thiol silane groups or bifunctional CNCs containing both thiol and propyl silanes were synthesized using an aqueous silylation reaction, and their performance in the flotation of chalcopyrite and pyrite was investigated in the presence of a sodium isobutyl xanthate collector. The results showed that the modified CNCs exhibited preferential interaction between chalcopyrite, and the flotation recovery of chalcopyrite decreased from ∼76% to ∼24% in the presence of thiol-grafted CNCs at pH 6, while the pyrite recovery decreased only from ∼82% to ∼75%, indicating the efficient selectivity of thiol-silylated CNCs toward chalcopyrite depression.

18.
Digit Health ; 9: 20552076231173554, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37179745

RESUMO

Objective: In contrast to the rising amount of financial investments for research and development in medical technology worldwide is the lack of usability and clinical readiness of the produced systems. We evaluated an augmented reality (AR) setup under development for preoperative perforator vessel mapping for elective autologous breast reconstruction. Methods: In this grant-supported research pilot, we used magnetic resonance angiography data (MR-A) of the trunk to superimpose the scans on the corresponding patients with hands-free AR goggles to identify regions-of-interest for surgical planning. Perforator location was assessed using MR-A imaging (MR-A projection) and Doppler ultrasound data (3D distance) and confirmed intraoperatively in all cases. We evaluated usability (System Usability Scale, SUS), data transfer load and documented personnel hours for software development, correlation of image data, as well as processing duration to clinical readiness (time from MR-A to AR projections per scan). Results: All perforator locations were confirmed intraoperatively, and we found a strong correlation between MR-A projection and 3D distance measurements (Spearman r = 0.894). The overall usability (SUS) was 67 ± 10 (=moderate to good). The presented setup for AR projections took 173 min to clinical readiness (=availability on AR device per patient). Conclusion: In this pilot, we calculated development investments based on project-approved grant-funded personnel hours with a moderate to good usability outcome resulting from some limitations: assessment was based on one-time testing with no previous training, a time lag of AR visualizations on the body and difficulties in spatial AR orientation. The use of AR systems can provide new opportunities for future surgical planning, but has more potential for educational (e.g., patient information) or training purposes of medical under- and postgraduates (spatial recognition of imaging data associated with anatomical structures and operative planning). We expect future usability improvements with refined user interfaces, faster AR hardware and artificial intelligence-enhanced visualization techniques.

19.
Opt Express ; 20(4): 4149-58, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22418172

RESUMO

We describe femtosecond X-ray diffraction data sets of viruses and nanoparticles collected at the Linac Coherent Light Source. The data establish the first large benchmark data sets for coherent diffraction methods freely available to the public, to bolster the development of algorithms that are essential for developing this novel approach as a useful imaging technique. Applications are 2D reconstructions, orientation classification and finally 3D imaging by assembling 2D patterns into a 3D diffraction volume.

20.
Opt Express ; 20(3): 2706-16, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22330507

RESUMO

We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.


Assuntos
Cristalografia por Raios X/métodos , Ferredoxinas/ultraestrutura , Lasers , Nanoestruturas/ultraestrutura , Difração de Raios X/métodos , Elétrons , Conformação Proteica , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA