Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Opt Express ; 30(13): 22421-22434, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36224940

RESUMO

In Fourier ptychography, multiple low resolution images are captured and subsequently combined computationally into a high-resolution, large-field of view micrograph. A theoretical image-formation model based on the assumption of plane-wave illumination from various directions is commonly used, to stitch together the captured information into a high synthetic aperture. The underlying far-field (Fraunhofer) diffraction assumption connects the source, sample, and pupil planes by Fourier transforms. While computationally simple, this assumption neglects phase-curvature due to non-planar illumination from point sources as well as phase-curvature from finite-conjugate microscopes (e.g., using a single-lens for image-formation). We describe a simple, efficient, and accurate extension of Fourier ptychography by embedding the effect of phase-curvature into the underlying forward model. With the improved forward model proposed here, quantitative phase reconstruction is possible even for wide fields-of-views and without the need of image segmentation. Lastly, the proposed method is computationally efficient, requiring only two multiplications: prior and following the reconstruction.

2.
Opt Express ; 30(19): 33490-33501, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242384

RESUMO

The biological world involves intracellular and intercellular interactions that occur at high speed, at multiple scales and in three dimensions. Acquiring 3D images, however, typically requires a compromise in either spatial or temporal resolution compared to 2D imaging. Conventional 2D fluorescence imaging provides high spatial resolution but requires plane-by-plane imaging of volumes. Conversely, snapshot methods such as light-field microscopy allow video-rate imaging, but at the cost of spatial resolution. Here we introduce 3D engineered point-spread function microscopy (3D-EPM), enabling snapshot imaging of real-world 3D extended biological structures while retaining the native resolution of the microscope in space and time. Our new computational recovery strategy is the key to volumetrically reconstructing arbitrary 3D structures from the information encapsulated in 2D raw EPM images. We validate our technique on both point-like and extended samples, and demonstrate its power by imaging the intracellular motion of chloroplasts undergoing cyclosis in a sample of Egeria densa. Our technique represents a generalised computational methodology for 3D image recovery which is readily adapted to a diverse range of existing microscopy platforms and engineered point-spread functions. We therefore expect it to find broad applicability in the study of rapid biological dynamics in 3D.


Assuntos
Imageamento Tridimensional , Microscopia , Imageamento Tridimensional/métodos
3.
Opt Express ; 30(16): 29189-29205, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299099

RESUMO

The ability of a microscope to rapidly acquire wide-field, high-resolution images is limited by both the optical performance of the microscope objective and the bandwidth of the detector. The use of multiple detectors can increase electronic-acquisition bandwidth, but the use of multiple parallel objectives is problematic since phase coherence is required across the multiple apertures. We report a new synthetic-aperture microscopy technique based on Fourier ptychography, where both the illumination and image-space numerical apertures are synthesized, using a spherical array of low-power microscope objectives that focus images onto mutually incoherent detectors. Phase coherence across apertures is achieved by capturing diffracted fields during angular illumination and using ptychographic reconstruction to synthesize wide-field, high-resolution, amplitude and phase images. Compared to conventional Fourier ptychography, the use of multiple objectives reduces image acquisition times by increasing the area for sampling the diffracted field. We demonstrate the proposed scaleable architecture with a nine-objective microscope that generates an 89-megapixel, 1.1 µm resolution image nine-times faster than can be achieved with a single-objective Fourier-ptychographic microscope. New calibration procedures and reconstruction algorithms enable the use of low-cost 3D-printed components for longitudinal biological sample imaging. Our technique offers a route to high-speed, gigapixel microscopy, for example, imaging the dynamics of large numbers of cells at scales ranging from sub-micron to centimetre, with an enhanced possibility to capture rare phenomena.

4.
Adv Exp Med Biol ; 1395: 391-396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36527668

RESUMO

The current COVID-19 pandemic has shown us that the pulse oximeter is a key medical device for monitoring blood-oxygen levels non-invasively in patients with chronic or acute illness. It has also emphasised limitations in accuracy for individuals with darker skin pigmentation, calling for new methods to provide better measurements. The aim of our study is to identify the impact of skin pigmentation on pulse oximeter measurements. We also explored the benefits of a multi-wavelength approach with an induced change of arterial oxygen saturation. A total of 20 healthy volunteers were recruited. We used time domain diffuse reflectance spectroscopy (TDDRS) from a broad band light source, collecting spectra from the index finger along with three different pulse oximeters used simultaneously for monitoring purposes. Five acute hypoxic events were induced by administering 11% FiO2, produced by a Hypoxico altitude training system, for 120 sec through a face mask with a one-way valve. Our multi-wavelength approach revealed a correlation between the signature of skin pigmentation and the dynamic range of oxygen saturation measurements. Principal component analysis (PCA) showed separation between a range of different pigmented volunteers (PC1 = 56.00%) and oxygen saturation (PC2 = 22.99%). This emphasises the need to take into account skin pigmentation in oximeter measurements. This preliminary study serves to validate the need to better understand the impact of skin pigmentation absorption on optical readings in pulse oximeters. Multi-wavelength approaches have the potential to enable robust and accurate measurements across diverse populations.


Assuntos
COVID-19 , Pigmentação da Pele , Humanos , Projetos Piloto , Altitude , Pandemias , Oximetria/métodos , Hipóxia , Oxigênio
5.
Ann Neurol ; 88(1): 123-136, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32293054

RESUMO

OBJECTIVE: Treatment of relapses in multiple sclerosis (MS) has not advanced beyond steroid use, which reduces acute loss of function, but has little effect on residual disability. Acute loss of function in an MS model (experimental autoimmune encephalomyelitis [EAE]) is partly due to central nervous system (CNS) hypoxia, and function can promptly improve upon breathing oxygen. Here, we investigate the cause of the hypoxia and whether it is due to a deficit in oxygen supply arising from impaired vascular perfusion. We also explore whether the CNS-selective vasodilating agent, nimodipine, may provide a therapy to restore function, and protect from demyelination in 2 MS models. METHODS: A variety of methods have been used to measure basic cardiovascular physiology, spinal oxygenation, mitochondrial function, and tissue perfusion in EAE. RESULTS: We report that the tissue hypoxia in EAE is associated with a profound hypoperfusion of the inflamed spinal cord. Treatment with nimodipine restores spinal oxygenation and can rapidly improve function. Nimodipine therapy also reduces demyelination in both EAE and a model of the early MS lesion. INTERPRETATION: Loss of function in EAE, and demyelination in EAE, and the model of the early MS lesion, seem to be due, at least in part, to tissue hypoxia due to local spinal hypoperfusion. Therapy to improve blood flow not only protects neurological function but also reduces demyelination. We conclude that nimodipine could be repurposed to offer substantial clinical benefit in MS. ANN NEUROL 2020 ANN NEUROL 2020;88:123-136.


Assuntos
Bloqueadores dos Canais de Cálcio/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Nimodipina/uso terapêutico , Medula Espinal/patologia , Animais , Progressão da Doença , Encefalomielite Autoimune Experimental/patologia , Feminino , Imageamento por Ressonância Magnética , Masculino , Bainha de Mielina/patologia , Ratos , Ratos Sprague-Dawley
6.
Opt Express ; 28(12): 18131-18134, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32680013

RESUMO

This Feature Issue includes 19 articles that highlight advances in the field of Computational Optical Sensing and Imaging. Many of the articles were presented at the 2019 OSA Topical Meeting on Computational Optical Sensing and Imaging held in Munich, Germany, on June 24-27. Articles featured in the issue cover a broad array of topics ranging from imaging through scattering media, imaging round corners and compressive imaging to machine learning for recovery of images.

7.
Opt Express ; 28(7): 9603-9630, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32225565

RESUMO

Traditional imaging systems exhibit a well-known trade-off between the resolution and the field of view of their captured images. Typical cameras and microscopes can either "zoom in" and image at high-resolution, or they can "zoom out" to see a larger area at lower resolution, but can rarely achieve both effects simultaneously. In this review, we present details about a relatively new procedure termed Fourier ptychography (FP), which addresses the above trade-off to produce gigapixel-scale images without requiring any moving parts. To accomplish this, FP captures multiple low-resolution, large field-of-view images and computationally combines them in the Fourier domain into a high-resolution, large field-of-view result. Here, we present details about the various implementations of FP and highlight its demonstrated advantages to date, such as aberration recovery, phase imaging, and 3D tomographic reconstruction, to name a few. After providing some basics about FP, we list important details for successful experimental implementation, discuss its relationship with other computational imaging techniques, and point to the latest advances in the field while highlighting persisting challenges.

8.
Opt Lett ; 45(22): 6182-6185, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33186945

RESUMO

Imaging with high angular resolution requires large apertures and long focal lengths. This has prevented the integration of telephoto lenses into thin devices such as modern mobile phones. We report a camera module employing multiple rotated rectangular apertures and folding of the optical system into the plane of the camera, enabling an order-of-magnitude reduction in depth compared to traditional telephoto lenses. Multiple images are fused in the frequency domain to yield a single high-resolution image equivalent to that yielded by a single circular aperture. The diameter of this equivalent aperture may be several times wider than the depth of the camera module. We propose two architectures and present illustrative optical designs to demonstrate the concept. Simulations of raytraced image acquisition and computational image reconstruction demonstrate the potential for high-quality, high-resolution imaging from thin, flat lens modules.

9.
Phys Rev Lett ; 124(19): 198104, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32469536

RESUMO

The localization of point sources in optical microscopy enables nm-precision imaging of single-molecules and biological dynamics. We report a new method of localization microscopy using twin Airy beams that yields precise 3D localization with the key advantages of extended depth range, higher optical throughput, and potential for imaging higher emitter densities than are possible using other techniques. A precision of better than 30 nm was achieved over a depth range in excess of 7 µm using a 60×, 1.4 NA objective. An illustrative application to extended-depth-range blood-flow imaging in a live zebrafish is also demonstrated.


Assuntos
Imageamento Tridimensional/métodos , Microscopia/métodos , Animais , Cloaca/irrigação sanguínea , Imageamento Tridimensional/instrumentação , Microscopia/instrumentação , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Fluxo Sanguíneo Regional , Peixe-Zebra
10.
Appl Opt ; 58(7): COS1-COS2, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30874226

RESUMO

The OSA Topical Meeting on Computational Optical Sensing and Imaging (COSI) was held June 25-June 28, 2018 in Orlando, Florida, USA, as part of the Imaging and Applied Optics Congress. In this feature issue, we present several papers that cover the techniques, topics, and advancements in the field presented at the COSI meeting highlighting the integration of opto-electric measurement and computational processing.

11.
Opt Express ; 26(6): 7563-7577, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29609310

RESUMO

A new single-aperture 3D particle-localization and tracking technique is presented that demonstrates an increase in depth range by more than an order of magnitude without compromising optical resolution and throughput. We exploit the extended depth range and depth-dependent translation of an Airy-beam PSF for 3D localization over an extended volume in a single snapshot. The technique is applicable to all bright-field and fluorescence modalities for particle localization and tracking, ranging from super-resolution microscopy through to the tracking of fluorescent beads and endogenous particles within cells. We demonstrate and validate its application to real-time 3D velocity imaging of fluid flow in capillaries using fluorescent tracer beads. An axial localization precision of 50 nm was obtained over a depth range of 120µm using a 0.4NA, 20× microscope objective. We believe this to be the highest ratio of axial range-to-precision reported to date.

12.
Opt Lett ; 41(8): 1869-72, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27082366

RESUMO

Foveated imaging, such as that evolved by biological systems to provide high angular resolution with a reduced space-bandwidth product, also offers advantages for man-made task-specific imaging. Foveated imaging systems using exclusively optical distortion are complex, bulky, and high cost, however. We demonstrate foveated imaging using a planar array of identical cameras combined with a prism array and superresolution reconstruction of a mosaicked image with a foveal variation in angular resolution of 5.9:1 and a quadrupling of the field of view. The combination of low-cost, mass-produced cameras and optics with computational image recovery offers enhanced capability of achieving large foveal ratios from compact, low-cost imaging systems.


Assuntos
Imagem Óptica/instrumentação , Fenômenos Ópticos , Processamento de Imagem Assistida por Computador
13.
J Opt Soc Am A Opt Image Sci Vis ; 32(3): 411-9, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26366652

RESUMO

Previous reports have demonstrated that it is possible to emulate the imaging function of a single conventional lens with an N×N array of identical lenslets to provide an N-fold reduction in imaging-system track length. This approach limits the application to low-resolution imaging. We highlight how using an array of dissimilar lenslets, with an array width that can be much wider than the detector array, high-resolution super-resolved imaging is possible. We illustrate this approach with a ray-traced design and optimization of a long-wave infrared system employing a 3×3 array of freeform lenslets to provide a fourfold reduction in track length compared to a baseline system. Simulations of image recovery show that recovered image quality is comparable to that of the baseline system.

14.
Opt Lett ; 39(7): 1889-92, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24686631

RESUMO

The angular resolution of many commercial imaging systems is limited, not by diffraction or optical aberrations, but by pixilation effects. Multiaperture imaging has previously demonstrated the potential for super-resolution (SR) imaging using a lenslet array and single detector array. We describe the practical demonstration of SR imaging using an array of 25 independent commercial-off-the-shelf cameras. This technique demonstrates the potential for increasing the angular resolution toward the diffraction limit, but without the limit on angular resolution imposed by the use of a single detector array.

15.
Appl Opt ; 52(17): 3931-6, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23759840

RESUMO

Reflective imaging systems are typically limited to small field angles in order to avoid overly large obscurations or off-axis aberrations. Reflective optics are often preferred in astronomy due to the associated lower weight and cost, as well as the absence of chromatic aberrations. Although these advantages are compelling, off-axis aberrations typically limit the field of view to a few degrees, while many imaging applications require a considerably larger useful field of view. A hybrid optical-digital design could alleviate the issues associated with wide-field reflective optics by exploiting the larger design freedom inherent in such systems. In this paper we demonstrate how a holistic design approach can enable reflective imaging systems with a consistently sharp image across a wide field of view.

17.
J Opt Soc Am A Opt Image Sci Vis ; 29(6): 921-7, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22673423

RESUMO

Multichanneled imaging systems rely on nonredundant images recorded by an array of low-resolution imagers to enable construction of a high-resolution image. We show how the varying degree of redundancy associated with imaging throughout the imaged volume effects image quality. Using ray-traced image simulations and a metric used as a proxy for human perception, we show that robust recovery of high-resolution images can be obtained by avoiding excessive redundancy and that this is a felicitous consequence of typical manufacturing tolerances.

18.
Nat Commun ; 13(1): 3566, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732642

RESUMO

Pixelation occurs in many imaging systems and limits the spatial resolution of the acquired images. This effect is notably present in quantum imaging experiments with correlated photons in which the number of pixels used to detect coincidences is often limited by the sensor technology or the acquisition speed. Here, we introduce a pixel super-resolution technique based on measuring the full spatially-resolved joint probability distribution (JPD) of spatially-entangled photons. Without shifting optical elements or using prior information, our technique increases the pixel resolution of the imaging system by a factor two and enables retrieval of spatial information lost due to undersampling. We demonstrate its use in various quantum imaging protocols using photon pairs, including quantum illumination, entanglement-enabled quantum holography, and in a full-field version of N00N-state quantum holography. The JPD pixel super-resolution technique can benefit any full-field imaging system limited by the sensor spatial resolution, including all already established and future photon-correlation-based quantum imaging schemes, bringing these techniques closer to real-world applications.

19.
Opt Lett ; 36(6): 969-71, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21403745

RESUMO

We experimentally demonstrate a miniaturized zoom lens with a single moving element based on the concepts and analysis described in Opt. Express 17, 6118 (2009). We show that the implementation of either a cubic or a generalized cubic phase-modulation function makes miniaturization possible in addition to providing extended-depth-of-field imaging. We present recovered images for zoom lenses employing both phase-modulation functions and conclude that the generalized-cubic-phase function yields higher image quality without the artifacts present for the pure-cubic-phase function.

20.
Opt Lett ; 36(8): 1332-4, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21499347

RESUMO

We describe the achromatization of Wollaston prisms to reduce the angular dispersion in the splitting angle. Analytical theory and ray-tracing modeling is presented. In an example application, a sixfold reduction in dispersion is achieved for wavelengths in the region 400 nm to 1.7 µm. Experimental proof of concept is demonstrated, and in an example application, the spectral dispersion of extended images recorded through cascaded Wollaston prisms is shown to be reduced by an order of magnitude.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA