RESUMO
BACKGROUND: Endocrinopathy due to iron overload is the most common morbidity whereas myocardial siderosis causing toxic cardiomyopathy is the leading cause of mortality among patients with transfusion dependent thalassemia major (TDTM). If detected early, this can be treated with aggressive chelation. T2* cardiac magnetic resonance imaging (CMR) guided chelation protocols are now the gold standard but have limited availability in low and middle-income countries. We hypothesized that markers of endocrine dysfunction would correlate with T2* CMR and can be used to predict the severity of myocardial siderosis and guide chelation therapy. METHODOLOGY: We undertook a multicenter retrospective study of 280 patients with TDTM to assess the prevalence of endocrinopathies and the predictive value of a number of individual and composite markers of endocrinopathy with T2* CMR. RESULTS: The prevalence of hypogonadism, stunting, hypoparathyroidism, and hypothyroidism was 82%, 69%, 40%, and 30%, respectively. The sensitivity of hypogonadism and stunting predicting severe myocardial siderosis was 90% and 80%, respectively. CONCLUSION: We conclude that clinical markers of endocrine dysfunction, especially hypogonadism (positive likelihood ratio [LR+] = 1.4, 95% confidence interval [CI] = 1.0-1.9; positive predictive value [PPV] = 77%, 95% CI = 70-82; negative predictive value [NPV] = 57%, 95% CI = 34-77] and stunting (LR+ = 1.3, 95% CI = 1.1-1.6; PPV = 64%, 95% CI = 60-69; NPV = 55%, 95% CI = 45-64) in TDTM can predict severe myocardial siderosis and can potentially guide chelation therapy, especially where access to T2* CMR is limited.
Assuntos
Cardiomiopatias/diagnóstico , Hipogonadismo/etiologia , Sobrecarga de Ferro/diagnóstico , Talassemia beta/terapia , Adolescente , Biomarcadores , Transfusão de Sangue , Cardiomiopatias/etiologia , Criança , Feminino , Transtornos do Crescimento/etiologia , Humanos , Hipoparatireoidismo/etiologia , Hipotireoidismo/etiologia , Sobrecarga de Ferro/complicações , Masculino , Estudos Retrospectivos , Sensibilidade e EspecificidadeRESUMO
A series of twenty alkyl derivatives (2-21) of 4-amino benzoic acid (1, PABA) have been prepared using potassium carbonate and opportune alkylating agents under simple and mild reaction conditions. Compounds (16-21) are reported for the first time. Electron impact mass spectrometry (EIMS), Fourier transform infrared (FTIR) and Proton nuclear magnetic resonance (1H-NMR) spectroscopic techniques were adopted for the characterization of these analogues. In the present study, the cytotoxic screening of sixteen compounds (3, 5-11, 13 and 15-21) was also achieved against lung (NCI-H460) and oral squamous carcinoma (CAL-27) cell lines. Compound 20 has shown magnificent inhibitory properties against NCI-H460 cell line (IC50 15.59 and 20.04 µM, respectively) at a lower dose than that of the control (cisplatin; IC50 21.00 µM). One-way analysis of variance (ANOVA), t-test and Pearson correlation coefficient (PCC) have been performed to determine the reliability of current data through statistical package for the social sciences (SPSS).
RESUMO
This study aimed to prepare three imine derivatives (1, 2, and 3) via a condensation reaction of phenyl hydrazine, 2-hydrazino pyridine, and 4-methoxy aniline with 4-formyl pyridine. Electron impact mass spectrometry (EIMS), proton nuclear magnetic resonance (1H-NMR), ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy were utilized for the characterization. The chemosensing properties of [4((2-phenyl hydrazono)methyl) pyridine] (1), [2-(2-(pyridin-4-ylmethylene)hydrazinyl) pyridine] (2), and [4-methoxy-N-yl methylene) aniline] (3) imino bases have been explored for the first time in aqueous media. The photophysical properties of chemosensors (1, 2, and 3) were examined by various cations (Na+, NH4+, Ba+2, Ni+2, Ca+2, Hg+2, Cu+2, Mg+2, Mn+2, and Pd+2). The chemosensor (1) showed very selective binding capability with copper ions at low concentrations (20 µM) without the influence of any other mentioned ions. The maximum complexation was noted with Cu+2 and 1 at pH between 7 to 7.5. The stoichiometry binding ratio between chemosensor (1) and Cu+2 was determined by Job's plot and it was found to be 1:2. The current study explored the use of these Schiff bases for the first time as heterocyclic chemosensors. DPPH radical scavenging, urease enzyme inhibition activities, molecular docking simulation, and density functional theory (DFT) analysis of compounds 1, 2, and 3 were also conducted.
RESUMO
OBJECTIVES: The aim of this study was to establish multidisciplinary care for patients with transfusion-dependent thalassaemia (TDT) by creating a TDT quality improvement (QI) collaborative in a resource-constrained setting. This study presents our initial experience of creating this collaborative, the baseline characteristics of the participants, the proposed QI interventions and the outcome metrics of the collaborative. DESIGN AND SETTING: TDT QI collaborative is a database comprising patients with TDT from four centres in Karachi, Pakistan. Study variables included symptoms of cardiac or endocrine dysfunction, physical examination including anthropometry and Tanner staging, chelation therapy, results of echocardiography, T2* cardiac MRI (CMR) and serum ferritin. The main outcome of this collaborative was improvement in TDT-related morbidity and mortality. Interventions addressing the key drivers of outcome were designed and implemented. RESULTS: At the time of reporting, the total number of patients in this database was 295. Most patients reported cardiac symptoms corresponding to New York Heart Association class 2. Approximately half (52%, n=153) of the patients demonstrated severe myocardial iron overload (T2* <10 ms). Majority of the patients (58%, n=175) were not on adequate chelation therapy. There was no difference in echocardiographic measures of systolic and diastolic left ventricle among the different spectrums of iron overloaded myocardium. CONCLUSION: Using T2* CMR and endocrine testing, we have identified significant burden of iron siderosis in our patients with TDT. Lack of adequate iron load assessment and standardised management was observed. Interventions designed to target these key drivers of outcome are the unique part of this QI-based TDT registry.
Assuntos
Transfusão de Eritrócitos/normas , Equipe de Assistência ao Paciente/normas , Melhoria de Qualidade , Talassemia beta/terapia , Adolescente , Criança , Feminino , Humanos , Masculino , Paquistão , Estudos Retrospectivos , Fatores de TempoRESUMO
OBJECTIVES: Cardiac T2* MRI (T2*CMR), for accurate estimation of myocardial siderosis, was introduced as part of a QI collaborative to optimise chelation therapy in order to improve cardiac morbidity in transfusion dependent thalassaemia (TDT) patients. We report the impact of this QI initiative from two thalassaemia centres from this collaborative. DESIGN AND SETTING: A key driver based quality initiative was implemented to improve chelation in TDT patients registered at these two centres in Karachi, Pakistan. Protocol optimisation and compliance to treatment through training, communication and feedback were used as the drivers for QI intervention. Preintervention variables (demographics, chelation history, T2*CMR, echocardiography and holters) were collected from January 2015 to December 2016) and compared with variables in the post implementation phase (January to December 2019). A standardised adverse event severity for chelators and its management was devised for safe drug therapy as well as ensuring compliance to the regimen. Preintervention and postintervention variables were compared using non-parametric test. P value<0.05 was statistically significant. RESULTS: 100 patients with TDT, median age 17 (9-34) years, were included. An increase or stabilisation of T2*CMR was documented in 82% patients in the postintervention phase especially in patients with severe myocardial iron overload (5.5 vs 5.3 ms, p <0.01). Significantly fewer patients had abnormal echocardiographic findings (3.5% vs 26%, p <0.05) in the postintervention versus preintervention period. CONCLUSION: This QI initiative improved the chelation therapy leading to improved cardiac status in TDT patients at the participating centres.
Assuntos
Terapia por Quelação/métodos , Cardiopatias/prevenção & controle , Coração/diagnóstico por imagem , Quelantes de Ferro/uso terapêutico , Sobrecarga de Ferro/prevenção & controle , Talassemia/terapia , Adolescente , Adulto , Transfusão de Sangue , Criança , Protocolos Clínicos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Paquistão , Melhoria de Qualidade , Adulto JovemRESUMO
1. Atrial natriuretic peptide (ANP)-null mice (Nppa(-/-)) exhibit cardiac hypertrophy at baseline and adverse cardiac remodelling in response to transverse aortic constriction (TAC)-induced pressure overload stress. Previous studies have suggested that natriuretic peptides could potentially oppose mineralocorticoid signalling at several levels, including suppression of adrenal aldosterone production, inhibition of mineralocorticoid receptor (MR) activation or suppression of MR-mediated production of pro-inflammatory factors. Thus, we hypothesized that the MR blocker eplerenone would prevent the exaggerated left ventricular (LV) remodelling/fibrosis and dysfunction after TAC in Nppa(-/-). 2. In the present study, Nppa(-/-) and wild-type Nppa(+/+) mice fed eplerenone- or vehicle (oatmeal)-supplemented chow since weaning were subjected to TAC or sham operation. The daily dose of eplerenone administered was approximately 200 mg/kg. At 1 week after TAC, LV size and function were evaluated by echocardiogram and LV cross-sections were stained with picrosirius red for collagen volume measurement. Total RNA was extracted from the LV for real-time polymerase chain reaction analysis of osteopontin. 3. Eplerenone had no effect on baseline hypertrophy observed in sham-operated Nppa(-/-) compared with Nppa(+/+) mice. Eplerenone attenuated the TAC-induced increase in LV weight in both genotypes and completely prevented LV dilation, systolic dysfunction and interstitial collagen deposition seen in Nppa(-/-) mice after TAC. However, serum aldosterone levels were lower in Nppa(-/-) compared with Nppa(+/+) wild types. No interaction between eplerenone and genotype in osteopontin mRNA levels was observed. 4. Eplerenone prevents adverse cardiac remodelling related to pressure overload in ANP-deficient mice, mainly due to an antifibrotic effect. The mechanism whereby ANP deficiency leads to excess hypertrophy, fibrosis and early failure following TAC is increased profibrotic signals resulting from excess or unopposed MR activation, rather than increased levels of aldosterone.
Assuntos
Fator Natriurético Atrial/genética , Pressão Sanguínea/fisiologia , Espironolactona/análogos & derivados , Remodelação Ventricular/efeitos dos fármacos , Aldosterona/análise , Aldosterona/sangue , Animais , Pressão Sanguínea/efeitos dos fármacos , Cardiomegalia/etiologia , Eplerenona , Coração/efeitos dos fármacos , Hipertrofia/etiologia , Masculino , Camundongos , Camundongos Knockout , Miocárdio/química , Miocárdio/patologia , Miocárdio/ultraestrutura , Espironolactona/farmacologiaRESUMO
Atrial natriuretic peptide (ANP) has negative modulatory effects on a variety of pathophysiological mechanisms; i.e., it inhibits hypoxia-induced pulmonary vasoconstriction and vascular remodeling and facilitates natriuresis and vasorelaxation in NaCl-supplemented subjects. We have previously demonstrated organ-selective potentiation of ANP in the pulmonary circulation of hypoxia-adapted animals by local downregulation of its clearance receptor (NPR-C; Li H, Oparil S, Meng QC, Elton T, and Chen Y-F. Am J Physiol Lung Cell Mol Physiol 268: L328-L335, 1995). The present study tested the hypothesis that NPR-C expression is attenuated selectively in kidneys of NaCl-supplemented subjects. Adult male wild-type (ANP+/+) and homozygous mutant (ANP-/-) mice were studied after 5 wk of normal or high-salt diets. Mean arterial pressure (MAP) and left (LV) and right ventricular (RV) mass were greater in ANP-/- mice than in ANP+/+ mice fed the normal-salt diet; salt supplementation induced increases in plasma ANP in ANP+/+ mice and in MAP and LV, RV, and renal mass in ANP-/- mice but not in ANP+/+ mice. NPR-C mRNA levels were selectively and significantly reduced (>60%) in kidney, but not in lung, brain, LV, or RV, by dietary salt supplementation in both genotypes. NPR-A mRNA levels did not differ among diet-genotype groups in any organ studied. cGMP content was significantly increased in kidney, but not in lung or brain, by dietary salt supplementation in both genotypes. These findings suggest that selective downregulation of NPR-C in the kidney in response to dietary salt supplementation may contribute to local elevation in ANP levels and may be functionally significant in attenuating the development of salt-sensitive hypertension.