Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 602(5): 967-987, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38294810

RESUMO

Aldosterone is responsible for maintaining volume and potassium homeostasis. Although high salt consumption should suppress aldosterone production, individuals with hyperaldosteronism lose this regulation, leading to a state of high aldosterone despite dietary sodium consumption. The present study examines the effects of elevated aldosterone, with or without high salt consumption, on the expression of key Na+ transporters and remodelling in the distal nephron. Epithelial sodium channel (ENaC) α-subunit expression was increased with aldosterone regardless of Na+ intake. However, ENaC ß- and γ-subunits unexpectedly increased at both a transcript and protein level with aldosterone when high salt was present. Expression of total and phosphorylated Na+ Cl- cotransporter (NCC) significantly increased with aldosterone, in association with decreased blood [K+ ], but the addition of high salt markedly attenuated the aldosterone-dependent NCC increase, despite equally severe hypokalaemia. We hypothesized this was a result of differences in distal convoluted tubule length when salt was given with aldosterone. Imaging and measurement of the entire pNCC-positive tubule revealed that aldosterone alone caused a shortening of this segment, although the tubule had a larger cross-sectional diameter. This was not true when salt was given with aldosterone because the combination was associated with a lengthening of the tubule in addition to increased diameter, suggesting that differences in the pNCC-positive area are not responsible for differences in NCC expression. Together, our results suggest the actions of aldosterone, and the subsequent changes related to hypokalaemia, are altered in the presence of high dietary Na+ . KEY POINTS: Aldosterone regulates volume and potassium homeostasis through effects on transporters in the kidney; its production can be dysregulated, preventing its suppression by high dietary sodium intake. Here, we examined how chronic high sodium consumption affects aldosterone's regulation of sodium transporters in the distal nephron. Our results suggest that high sodium consumption with aldosterone is associated with increased expression of all three epithelial sodium channel subunits, rather than just the alpha subunit. Aldosterone and its associated decrease in blood [K+ ] lead to an increased expression of Na-Cl cotransporter (NCC); the addition of high sodium consumption with aldosterone partially attenuates this NCC expression, despite similarly low blood [K+ ]. Upstream kinase regulators and tubule remodelling do not explain these results.


Assuntos
Hipopotassemia , Sódio na Dieta , Humanos , Sódio na Dieta/farmacologia , Sódio na Dieta/metabolismo , Sódio/metabolismo , Aldosterona/farmacologia , Aldosterona/metabolismo , Canais Epiteliais de Sódio/metabolismo , Hipopotassemia/metabolismo , Túbulos Renais Distais/metabolismo , Cloreto de Sódio na Dieta , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Potássio/metabolismo
2.
Int J Mol Sci ; 22(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34681576

RESUMO

Acute kidney injury due to renal ischemia-reperfusion injury (IRI) may lead to chronic or end stage kidney disease. A greater understanding of the cellular mechanisms underlying IRI are required to develop therapeutic options aimed at limiting or reversing damage from IRI. Prior work has shown that deletion of the α subunit of the epithelial Na+ channel (ENaC) in endothelial cells protects from IRI by increasing the availability of nitric oxide. While canonical ENaCs consist of an α, ß, and γ subunit, there is evidence of non-canonical ENaC expression in endothelial cells involving the α subunit. We therefore tested whether the deletion of the γ subunit of ENaC also protects mice from IRI to differentiate between these channel configurations. Mice with endothelial-specific deletion of the γ subunit and control littermates were subjected to unilateral renal artery occlusion followed by 48 h of reperfusion. No significant difference was noted in injury between the two groups as assessed by serum creatinine and blood urea nitrogen, levels of specific kidney injury markers, and histological examination. While deletion of the γ subunit did not alter infiltration of immune cells or cytokine message, it was associated with an increase in levels of total and phosphorylated endothelial nitric oxide synthase (eNOS) in the injured kidneys. Our studies demonstrate that even though deletion of the γ subunit of ENaC may allow for greater activation of eNOS, this is not sufficient to prevent IRI, suggesting the protective effects of α subunit deletion may be due, in part, to other mechanisms.


Assuntos
Injúria Renal Aguda/genética , Células Endoteliais/metabolismo , Canais Epiteliais de Sódio/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Traumatismo por Reperfusão/genética , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Animais , Nitrogênio da Ureia Sanguínea , Estudos de Casos e Controles , Linhagem Celular , Creatinina/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Canais Epiteliais de Sódio/metabolismo , Deleção de Genes , Masculino , Camundongos , Fosforilação , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/metabolismo
3.
Case Rep Genet ; 2022: 4056780, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420349

RESUMO

Autosomal recessive intellectual developmental disorder type 5 (MRT5, OMIM # 611091) is caused by biallelic pathogenic variants, leading to loss of function of the NSUN2 gene which encodes a methyltransferase involved in several biological processes, ranging from stress response to neurodevelopment (Hussain 2021). The current literature shows that MRT5 typically manifests with intellectual disability, facial dysmorphism, juvenile cataracts, chronic nephritis, hearing impairment, seizures, cerebellar atrophy, and microcephaly (Pingree et al. 2021). We describe a case of a patient with MRT5 who developed epilepsy in his teens, a rare clinical presentation that has not yet been discussed at length in the literature. Our patient is a 15-year-old male with a history of autism, developmental delay, and focal epilepsy who underwent genetic testing and was found to have a homozygous frameshift mutation in NSUN2 predicted to cause loss of function. This case emphasizes that epilepsy can be a phenotypic manifestation in patients with MRT5.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA