Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Biol ; 34(13): 2868-2879.e6, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38870933

RESUMO

In dividing cells, accurate chromosome segregation depends on sister chromatid cohesion, protein linkages that are established during DNA replication. Faithful chromosome segregation in oocytes requires that cohesion, first established in S phase, remain intact for days to decades, depending on the organism. Premature loss of meiotic cohesion in oocytes leads to the production of aneuploid gametes and contributes to the increased incidence of meiotic segregation errors as women age (maternal age effect). The prevailing model is that cohesive linkages do not turn over in mammalian oocytes. However, we have previously reported that cohesion-related defects arise in Drosophila oocytes when individual cohesin subunits or cohesin regulators are knocked down after meiotic S phase. Here, we use two strategies to express a tagged cohesin subunit exclusively during mid-prophase in Drosophila oocytes and demonstrate that newly expressed cohesin is used to form de novo linkages after meiotic S phase. Cohesin along the arms of oocyte chromosomes appears to completely turn over within a 2-day window during prophase, whereas replacement is less extensive at centromeres. Unlike S-phase cohesion establishment, the formation of new cohesive linkages during meiotic prophase does not require acetylation of conserved lysines within the Smc3 head. Our findings indicate that maintenance of cohesion between S phase and chromosome segregation in Drosophila oocytes requires an active cohesion rejuvenation program that generates new cohesive linkages during meiotic prophase.


Assuntos
Proteínas de Ciclo Celular , Cromatina , Proteínas Cromossômicas não Histona , Coesinas , Proteínas de Drosophila , Oócitos , Animais , Oócitos/metabolismo , Oócitos/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Feminino , Cromatina/metabolismo , Segregação de Cromossomos/fisiologia , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética
2.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849129

RESUMO

Accurate chromosome segregation during meiosis requires the maintenance of sister chromatid cohesion, initially established during premeiotic S phase. In human oocytes, DNA replication and cohesion establishment occur decades before chromosome segregation and deterioration of meiotic cohesion is one factor that leads to increased segregation errors as women age. Our previous work led us to propose that a cohesion rejuvenation program operates to establish new cohesive linkages during meiotic prophase in Drosophila oocytes and depends on the cohesin loader Nipped-B and the cohesion establishment factor Eco. In support of this model, we recently demonstrated that chromosome-associated cohesin turns over extensively during meiotic prophase and failure to load cohesin onto chromosomes after premeiotic S phase results in arm cohesion defects in Drosophila oocytes. To identify proteins required for prophase cohesion rejuvenation but not S phase establishment, we conducted a Gal4-UAS inducible RNAi screen that utilized two distinct germline drivers. Using this strategy, we identified 29 gene products for which hairpin expression during meiotic prophase, but not premeiotic S phase, significantly increased segregation errors. Prophase knockdown of Brahma or Pumilio, two positives with functional links to the cohesin loader, caused a significant elevation in the missegregation of recombinant homologs, a phenotype consistent with premature loss of arm cohesion. Moreover, fluorescence in situ hybridization confirmed that Brahma, Pumilio, and Nipped-B are required during meiotic prophase for the maintenance of arm cohesion. Our data support the model that Brahma and Pumilio regulate Nipped-B-dependent cohesin loading during rejuvenation. Future analyses will better define the mechanism(s) that govern meiotic cohesion rejuvenation and whether additional prophase-specific positives function in this process.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Coesinas , Proteínas de Drosophila , Oócitos , Interferência de RNA , Animais , Oócitos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Feminino , Segregação de Cromossomos , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética
3.
bioRxiv ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645916

RESUMO

In dividing cells, accurate chromosome segregation depends on sister chromatid cohesion, protein linkages that are established during DNA replication. Faithful chromosome segregation in oocytes requires that cohesion, first established in S phase, remain intact for days to decades, depending on the organism. Premature loss of meiotic cohesion in oocytes leads to the production of aneuploid gametes and contributes to the increased incidence of meiotic segregation errors as women age (maternal age effect). The prevailing model is that cohesive linkages do not turn over in mammalian oocytes. However, we have previously reported that cohesion-related defects arise in Drosophila oocytes when individual cohesin subunits or cohesin regulators are knocked down after meiotic S phase. Here we use two strategies to express a tagged cohesin subunit exclusively during mid-prophase in Drosophila oocytes and demonstrate that newly expressed cohesin is used to form de novo linkages after meiotic S phase. Moreover, nearly complete turnover of chromosome-associated cohesin occurs during meiotic prophase, with faster replacement on the arms than at the centromeres. Unlike S-phase cohesion establishment, the formation of new cohesive linkages during meiotic prophase does not require acetylation of conserved lysines within the Smc3 head. Our findings indicate that maintenance of cohesion between S phase and chromosome segregation in Drosophila oocytes requires an active cohesion rejuvenation program that generates new cohesive linkages during meiotic prophase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA