Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Med Phys ; 37(8): 4424-31, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20879601

RESUMO

PURPOSE: In 2008, a national intensity modulated radiation therapy (IMRT) dosimetry intercomparison was carried out for all 23 radiation oncology institutions in Switzerland. It was the aim to check the treatment chain focused on the planning, dose calculation, and irradiation process. METHODS: A thorax phantom with inhomogeneities was used, in which thermoluminescence dosimeter (TLD) and ionization chamber measurements were performed. Additionally, absolute dosimetry of the applied beams has been checked. Altogether, 30 plan-measurement combinations have been used in the comparison study. The results have been grouped according to dose calculation algorithms, classified as "type a" or "type b," as proposed by Kntis et al. ["Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations," Phys. Med. Biol. 51, 5785-5807 (2006)]. RESULTS: Absolute dosimetry check under standard conditions: The mean ratio between the dose derived from the single field measurement and the stated dose, calculated with the treatment planning system, was 1.007 +/- 0.010 for the ionization chamber and 1.002 +/- 0.014 (mean+/- standard deviation) for the TLD measurements. IMRT Plan Check: In the lung tissue of the planning target volume, a significantly better agreement between measurements (TLD, ionization chamber) and calculations is shown for type b algorithms than for type a (p <0.001). In regions outside the lungs, the absolute differences between TLD measured and stated dose values, relative to the prescribed dose, [(Dm-Ds)/Dprescribed], are 1.9 +/- 0.4% and 1.4 +/- 0.3%, respectively. These data show the same degree of accuracy between the two algorithm types if low-density medium is not present. CONCLUSIONS: The results demonstrate that the performed intercomparison is feasible and confirm the calculation accuracies of type a and type b algorithms in a water equivalent and low-density environment. It is now planned to offer the intercomparison on a regular basis to all Swiss institutions using IMRT techniques.


Assuntos
Radiometria/instrumentação , Radiometria/normas , Radioterapia Conformacional/normas , Tórax , Análise de Falha de Equipamento , Humanos , Imagens de Fantasmas , Radiometria/métodos , Dosagem Radioterapêutica , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Suíça
2.
Med Phys ; 35(4): 1521-31, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18491547

RESUMO

BEAMnrc, a code for simulating medical linear accelerators based on EGSnrc, has been bench-marked and used extensively in the scientific literature and is therefore often considered to be the gold standard for Monte Carlo simulations for radiotherapy applications. However, its long computation times make it too slow for the clinical routine and often even for research purposes without a large investment in computing resources. VMC++ is a much faster code thanks to the intensive use of variance reduction techniques and a much faster implementation of the condensed history technique for charged particle transport. A research version of this code is also capable of simulating the full head of linear accelerators operated in photon mode (excluding multileaf collimators, hard and dynamic wedges). In this work, a validation of the full head simulation at 6 and 18 MV is performed, simulating with VMC++ and BEAMnrc the addition of one head component at a time and comparing the resulting phase space files. For the comparison, photon and electron fluence, photon energy fluence, mean energy, and photon spectra are considered. The largest absolute differences are found in the energy fluences. For all the simulations of the different head components, a very good agreement (differences in energy fluences between VMC++ and BEAMnrc <1%) is obtained. Only a particular case at 6 MV shows a somewhat larger energy fluence difference of 1.4%. Dosimetrically, these phase space differences imply an agreement between both codes at the <1% level, making VMC++ head module suitable for full head simulations with considerable gain in efficiency and without loss of accuracy.


Assuntos
Algoritmos , Método de Monte Carlo , Aceleradores de Partículas , Fótons/uso terapêutico , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Validação de Programas de Computador , Software , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Phys Med Biol ; 52(13): 3679-91, 2007 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-17664570

RESUMO

The purpose of this work was to study and quantify the differences in dose distributions computed with some of the newest dose calculation algorithms available in commercial planning systems. The study was done for clinical cases originally calculated with pencil beam convolution (PBC) where large density inhomogeneities were present. Three other dose algorithms were used: a pencil beam like algorithm, the anisotropic analytic algorithm (AAA), a convolution superposition algorithm, collapsed cone convolution (CCC), and a Monte Carlo program, voxel Monte Carlo (VMC++). The dose calculation algorithms were compared under static field irradiations at 6 MV and 15 MV using multileaf collimators and hard wedges where necessary. Five clinical cases were studied: three lung and two breast cases. We found that, in terms of accuracy, the CCC algorithm performed better overall than AAA compared to VMC++, but AAA remains an attractive option for routine use in the clinic due to its short computation times. Dose differences between the different algorithms and VMC++ for the median value of the planning target volume (PTV) were typically 0.4% (range: 0.0 to 1.4%) in the lung and -1.3% (range: -2.1 to -0.6%) in the breast for the few cases we analysed. As expected, PTV coverage and dose homogeneity turned out to be more critical in the lung than in the breast cases with respect to the accuracy of the dose calculation. This was observed in the dose volume histograms obtained from the Monte Carlo simulations.


Assuntos
Anisotropia , Algoritmos , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Simulação por Computador , Relação Dose-Resposta à Radiação , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Modelos Estatísticos , Método de Monte Carlo , Linguagens de Programação , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador , Radioterapia Conformacional , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA