Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Radiat Environ Biophys ; 61(3): 435-443, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35776166

RESUMO

In this study, linear and mass attenuation coefficients of fabricated particleboards intended for use as phantom material were estimated using 137Cs and 60Co radiation sources. Particleboards made of Rhizophora spp. wood trunk bonded with soy flour and lignin were fabricated at a target density of 1.0 g cm-3, with and without gloss finish coating. Elemental composition of the particleboards was obtained by means of energy dispersive X-ray (EDX) spectroscopy. Experimental setups were simulated via the GATE Monte Carlo (MC) package, with particle histories of 1 × 106-1 × 107. Linear and mass attenuation coefficients obtained from measurements and GATE simulations were compared and discussed. The percentage differences between the measured and simulated linear and mass attenuation coefficients of the samples were reasonably small (2.05-4.88% for 137Cs and 3.24-5.38% for 60Co). It is shown that all the particleboards have the potential to be used as phantom materials as the attenuation coefficients measured were in good agreement with those of water (calculated with XCOM) and with those simulated with the GATE toolkit. The use of gloss finish coating also did not show any significant effect on the attenuation coefficient of the phantom material. Verification of experimental results via GATE simulations has been shown crucial in providing reliable data for energy transmission studies. Based on the results achieved in this study, it is concluded that the studied material-Rhizophora spp. wood trunk bonded with soy flour and lignin including gloss finish coating-can be used in radiation dosimetry studies.


Assuntos
Rhizophoraceae , Radioisótopos de Césio , Radioisótopos de Cobalto , Lignina , Método de Monte Carlo , Imagens de Fantasmas , Radiometria
2.
Appl Radiat Isot ; 199: 110916, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37393764

RESUMO

A common therapeutic radionuclide used in hepatic radioembolization is yttrium-90 (90Y). However, the absence of gamma emissions makes it difficult to verify the post-treatment distribution of 90Y microspheres. Gadolinium-159 (159Gd) has physical properties that are suitable for therapy and post-treatment imaging in hepatic radioembolization procedures. The current study is innovative for conducting a dosimetric investigation of the use of 159Gd in hepatic radioembolization by simulating tomographic images using the Geant4 application for tomographic emission (GATE) Monte Carlo (MC) simulation. For registration and segmentation, tomographic images of five patients with hepatocellular carcinoma (HCC) who had undergone transarterial radioembolization (TARE) therapy were processed using a 3D slicer. The tomographic images with 159Gd and 90Y separately were simulated using the GATE MC Package. The output of simulation (dose image) was uploaded to 3D slicer to compute the absorbed dose for each organ of interests. 159Gd were able to provide a recommended dose of 120 Gy to the tumour, with normal liver and lungs absorbed doses close to that of 90Y and less than the respective maximum permitted doses of 70 Gy and 30 Gy, respectively. Compared to 90Y, 159Gd requires higher administered activity approximately 4.92 times to achieve a tumour dose of 120 Gy. Thus; this research gives new insights into the use of 159Gd as a theranostic radioisotope, with the potential to be used as a90Y alternative for liver radioembolization.


Assuntos
Carcinoma Hepatocelular , Embolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/radioterapia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Método de Monte Carlo , Radioisótopos de Ítrio/uso terapêutico , Embolização Terapêutica/métodos , Microesferas
3.
Health Phys ; 125(2): 77-91, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36826380

RESUMO

ABSTRACT: The current study was undertaken to investigate the radiological and dosimetric parameters of natural product-based composite (SPI/NaOH/IA-PAE/ Rhizophora spp .) phantoms. The radiological properties of the phantoms were measured at different gamma energies from Compton scatter of photons through angles of 0, 30, 45, 60, 75, and 90 degrees. Ionization chamber (IC) and Gafchromic EBT3 film dosimeters were employed to evaluate the dosimetric characteristics for photons (6-10 MV) and electrons (6-15 MeV). Radiological property results of the composite phantoms were consistent with good quality compared to those of solid water phantoms and theoretical values of water. Photon beam quality index of the SPI15 phantom with p-values of 0.071 and 0.073 exhibited insignificant changes. In addition, good agreement was found between PDD curves measured with IC and Gafchromic EBT3 film for both photons and electrons. The computed therapeutic and half-value depth ranges matched within the limits and are similar to those of water and solid water phantoms. Therefore, the radiological and dosimetric parameters of the studied composite phantom permit its use in the selection of convenient tissue- and water-equivalent phantom material for medical applications.


Assuntos
Elétrons , Fótons , Radiometria/métodos , Radiografia , Imagens de Fantasmas , Água , Método de Monte Carlo
4.
Polymers (Basel) ; 15(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36616594

RESUMO

Background: Different compositions of DSF/NaOH/IA-PAE/R. spp. composite particleboard phantoms were constructed. Methods: Photon attenuation characteristics were ascertained using gamma rays from 137Cs and 60Co. Absorbed doses at the location of an ionization chamber and Gafchromic EBT3 radiochromic films were calculated for high-energy photons (6 and 10 MV) and electrons (6, 9, 12, and 15 MeV). Results: The calculated TPR20,10 values indicate that the percentage discrepancy for 6 and 10 MV was in the range of 0.29-0.72% and 0.26-0.65%. It was also found that the relative difference in the dmax to water and solid water phantoms was between 1.08-1.28% and 5.42-6.70%. The discrepancies in the determination of PDD curves with 6, 9, 12, and 15 MeV, and those of water and solid water phantoms, ranged from 2.40-4.84%. Comparable results were found using the EBT3 films with variations of 2.0-7.0% for 6 and 10 MV photons. Likewise, the discrepancies for 6, 9, 12, and 15 MeV electrons were within an acceptable range of 2.0-4.5%. Conclusions: On the basis of these findings, the DSF/NaOH/IA-PAE/R. spp. particleboard phantoms with 15 wt% IA-PAE addition level can be effectively used as alternative tissue-equivalent phantom material for radiation therapy applications.

5.
J Med Phys ; 48(4): 358-364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38223797

RESUMO

Purpose: This study aims to determine the percentage depth dose (PDD) of a phantom material made from soy-lignin bonded Rhizophora spp. particleboard coated with a gloss finish by using Monte Carlo Geant4 Application for Tomographic Emission (GATE) simulation. Materials and Methods: The particleboard was fabricated using a hot pressing technique at target density of 1.0 g·cm-3 and the elemental fraction was recorded for the simulation. The PDD was simulated in the GATE simulation using the linear accelerator Elekta Synergy model for the water phantom and Rhizophora phantom, and the results were compared with the experimental PDD performed by several studies. Beam flatness and beam symmetry were also measured in this study. Results: The simulated PDD for Rhizophora and water was in agreement with the experimental PDD of water with overall discrepancies of 0% to 8.7% at depth ranging from 1.0 to 15.0 cm. In the GATE simulation, all the points passed the clinical 3%/3 mm criterion in comparison with water, with the final percentage of 2.34% for Rhizophora phantom and 2.49% for the water phantom simulated in GATE. Both the symmetries are all within the range of an acceptable value of 2.0% according to the recommendation, with the beam symmetry of the water phantom and Rhizophora phantom at 0.58% and 0.28%, respectively. Conclusions: The findings of this study provide the necessary foundation to confidently use the phantom for radiotherapy purposes, especially in treatment planning.

6.
Med Phys ; 49(12): 7742-7753, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36098271

RESUMO

PURPOSE: Monte Carlo (MC) simulation is an important technique that can help design advanced and challenging experimental setups. GATE (Geant4 application for tomographic emission) is a useful simulation toolkit for applications in nuclear medicine. Transarterial radioembolization is a treatment for liver cancer, where microspheres embedded with yttrium-90 (90 Y) are administered intra-arterially to the tumor. Personalized dosimetry for this treatment may provide higher dosimetry accuracy compared to the conventional partition model (PM) calculation. However, incorporation of three-dimensional tomographic input data into MC simulation is an intricate process. In this article, 3D Slicer, free and open-source software, was utilized for the incorporation of patient tomographic images into GATE to demonstrate the feasibility of personalized dosimetry in hepatic radioembolization with 90 Y. METHODS: In this article, the steps involved in importing, segmenting, and registering tomographic images using 3D Slicer were thoroughly described, before importing them into GATE for MC simulation. The absorbed doses estimated using GATE were then compared with that of PM. SlicerRT, a 3D Slicer extension, was then used to visualize the isodose from the MC simulation. RESULTS: A workflow diagram consisting of all the steps taken in the utilization of 3D Slicer for personalized dosimetry in 90 Y radioembolization has been presented in this article. In comparison to the MC simulation, the absorbed doses to the tumor and normal liver were overestimated by PM by 105.55% and 20.23%, respectively, whereas for lungs, the absorbed dose estimated by PM was underestimated by 25.32%. These values were supported by the isodose distribution obtained via SlicerRT, suggesting the presence of beta particles outside the volumes of interest. These findings demonstrate the importance of personalized dosimetry for a more accurate absorbed dose estimation compared to PM. CONCLUSION: The methodology provided in this study can assist users (especially students or researchers who are new to MC simulation) in navigating intricate steps required in the importation of tomographic data for MC simulation. These steps can also be utilized for other radiation therapy related applications, not necessarily limited to internal dosimetry.


Assuntos
Neoplasias Hepáticas , Radioisótopos de Ítrio , Humanos , Método de Monte Carlo , Radioisótopos de Ítrio/uso terapêutico , Simulação por Computador , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Radiometria/métodos
7.
Polymers (Basel) ; 13(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199810

RESUMO

Rhizophora spp. particleboard with the incorporation of lignin and soy flour as binders were fabricated and the influence of different percentages of lignin and soy flour (0%, 6% and 12%) on the physico-mechanical properties of the particleboard were studied. The samples were characterised by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray fluorescence (XRF) and internal bonding. The results stipulated that the addition of binders in the fabrication of the particleboard did not change the functional groups according to the FTIR spectrum. For XRD, addition of binders did not reveal any major transformation within the composites. SEM and EDX analyses for all percentages of binders added showed no apparent disparity; however, it is important to note that the incorporation of binders allows better bonding between the molecules. In XRF analysis, lower percentage of chlorine in the adhesive-bonded samples may be advantageous in maintaining the natural properties of the particleboard. In internal bonding, increased internal bond strength in samples with binders may indicate better structural integrity and physico-mechanical strength. In conclusion, the incorporation of lignin and soy flour as binders may potentially strengthen and fortify the particleboard, thus, can be a reliable phantom in radiation dosimetry applications.

8.
Appl Radiat Isot ; 170: 109601, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33515930

RESUMO

Experimental particleboards are made from Rhizophora spp. wood trunk with three different percentages of lignin and soy flour (0%, 6% and 12%) as adhesives. The objective was to investigate the equivalence of Rhizophora spp. particleboard as phantom material with human soft tissue using Computed Tomography (CT) number. The linear and mass attenuation coefficient of Rhizophora spp. particleboard at low energy range was also explored using X-ray Fluorescence (XRF) configuration technique. Further characterization of the particleboard was performed to determine the effective atomic number, Zeff using Energy Dispersive X-Ray (EDX) method. Adhesive-bonded Rhizophora spp. particleboard showed close similarities with water, based on the average CT numbers, electron density calibration curve and the analysis of CT density profile, compared to the binderless particleboard. The effective atomic number obtained from the study indicated that the attenuation properties of all the particleboards at different percentages of adhesives were almost similar to water. The mass attenuation coefficient calculated from XRF configuration technique showed good agreement with water from XCOM database, suggesting its potential as phantom material for radiation study.


Assuntos
Glycine max/química , Lignina/química , Radiometria/métodos , Rhizophoraceae/química , Tomografia Computadorizada por Raios X/métodos , Bases de Dados Factuais , Espectrometria por Raios X/métodos
9.
Phys Med Biol ; 62(18): 7342-7356, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28686171

RESUMO

We aimed to investigate the validity of the partition model (PM) in estimating the absorbed doses to liver tumour ([Formula: see text]), normal liver tissue ([Formula: see text]) and lungs ([Formula: see text]), when cross-fire irradiations between these compartments are being considered. MIRD-5 phantom incorporated with various treatment parameters, i.e. tumour involvement (TI), tumour-to-normal liver uptake ratio (T/N) and lung shunting (LS), were simulated using the Geant4 Monte Carlo (MC) toolkit. 108 track histories were generated for each combination of the three parameters to obtain the absorbed dose per activity uptake in each compartment ([Formula: see text], [Formula: see text], and [Formula: see text]). The administered activities, A were estimated using PM, so as to achieve either limiting doses to normal liver, [Formula: see text] or lungs, [Formula: see text] (70 or 30 Gy, respectively). Using these administered activities, the activity uptake in each compartment ([Formula: see text], [Formula: see text], and [Formula: see text]) was estimated and multiplied with the absorbed dose per activity uptake attained using the MC simulations, to obtain the actual dose received by each compartment. PM overestimated [Formula: see text] by 11.7% in all cases, due to the escaped particles from the lungs. [Formula: see text] and [Formula: see text] by MC were largely affected by T/N, which were not considered by PM due to cross-fire exclusion at the tumour-normal liver boundary. These have resulted in the overestimation of [Formula: see text] by up to 8% and underestimation of [Formula: see text] by as high as -78%, by PM. When [Formula: see text] was estimated via PM, the MC simulations showed significantly higher [Formula: see text] for cases with higher T/N, and LS ⩽ 10%. All [Formula: see text] and [Formula: see text] by MC were overestimated by PM, thus [Formula: see text] were never exceeded. PM leads to inaccurate dose estimations due to the exclusion of cross-fire irradiation, i.e. between the tumour and normal liver tissue. Caution should be taken for cases with higher TI and T/N, and lower LS, as they contribute to major underestimation of [Formula: see text]. For [Formula: see text], a different correction factor for dose calculation may be used for improved accuracy.


Assuntos
Braquiterapia/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Método de Monte Carlo , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioisótopos de Ítrio/uso terapêutico , Adulto , Humanos , Neoplasias Hepáticas/radioterapia , Neoplasias Pulmonares/radioterapia , Radiometria/métodos
10.
PLoS One ; 10(9): e0138106, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26382059

RESUMO

INTRODUCTION: Samarium-153 (153Sm) styrene divinylbenzene microparticles were developed as a surrogate for Yttrium-90 (90Y) microspheres in liver radioembolization therapy. Unlike the pure beta emitter 90Y, 153Sm possess both therapeutic beta and diagnostic gamma radiations, making it possible for post-procedure imaging following therapy. METHODS: The microparticles were prepared using commercially available cation exchange resin, Amberlite IR-120 H+ (620-830 µm), which were reduced to 20-40 µm via ball mill grinding and sieve separation. The microparticles were labelled with 152Sm via ion exchange process with 152SmCl3, prior to neutron activation to produce radioactive 153Sm through 152Sm(n,γ)153Sm reaction. Therapeutic activity of 3 GBq was referred based on the recommended activity used in 90Y-microspheres therapy. The samples were irradiated in 1.494 x 10(12) n.cm(-2).s(-1) neutron flux for 6 h to achieve the nominal activity of 3.1 GBq.g(-1). Physicochemical characterisation of the microparticles, gamma spectrometry, and in vitro radiolabelling studies were carried out to study the performance and stability of the microparticles. RESULTS: Fourier Transform Infrared (FTIR) spectroscopy of the Amberlite IR-120 resins showed unaffected functional groups, following size reduction of the beads. However, as shown by the electron microscope, the microparticles were irregular in shape. The radioactivity achieved after 6 h neutron activation was 3.104 ± 0.029 GBq. The specific activity per microparticle was 53.855 ± 0.503 Bq. Gamma spectrometry and elemental analysis showed no radioactive impurities in the samples. Radiolabelling efficiencies of 153Sm-Amberlite in distilled water and blood plasma over 48 h were excellent and higher than 95%. CONCLUSION: The laboratory work revealed that the 153Sm-Amberlite microparticles demonstrated superior characteristics for potential use in hepatic radioembolization.


Assuntos
Carcinoma Hepatocelular/terapia , Embolização Terapêutica/métodos , Neoplasias Hepáticas/terapia , Microesferas , Radioisótopos/uso terapêutico , Samário/uso terapêutico , Braquiterapia/métodos , Carcinoma Hepatocelular/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Teste de Materiais , Nêutrons , Tamanho da Partícula , Período Pós-Operatório , Cintilografia , Resinas Sintéticas/química , Resinas Sintéticas/uso terapêutico , Radioisótopos de Ítrio/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA