Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Haematol ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973155

RESUMO

Routine ABO blood group typing of apparently healthy individuals sporadically uncovers unexplained mixed-field reactions. Such blood group discrepancies can either result from a haematopoiesis-confined or body-wide dispersed chimerism or mosaicism. Taking the distinct clinical consequences of these four different possibilities into account, we explored the responsible cause in nine affected individuals. Genotype analyses revealed that more than three-quarters were chimaeras (two same-sex females, four same-sex males, one sex-mismatched male), while two were mosaics. Short tandem repeat analyses of buccal swab, hair root and nail DNA suggested a body-wide involvement in all instances. Moreover, genome-wide array analyses unveiled that in both mosaic cases the causative genetic defect was a unique copy-neutral loss of heterozygosity encompassing the entire long arm of chromosome 9. The practical transfusion- or transplantation-associated consequences of such incidental discoveries are well known and therefore easily manageable. Far less appreciated is the fact that such findings also call attention to potential problems that directly ensue from their specific genetic make-up. In case of chimerism, these are the appearance of seemingly implausible family relationships and pitfalls in forensic testing. In case of mosaicism, they concern with the necessity to delineate innocuous pre-existent or age-related from disease-predisposing and disease-indicating cell clones.

3.
Cancers (Basel) ; 13(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34572826

RESUMO

Chromosome 21 is the most affected chromosome in childhood acute lymphoblastic leukemia. Many of its numerical and structural abnormalities define diagnostically and clinically important subgroups. To obtain an overview about their types and their approximate genetic subgroup-specific incidence and distribution, we performed cytogenetic, FISH and array analyses in a total of 578 ALL patients (including 26 with a constitutional trisomy 21). The latter is the preferred method to assess genome-wide large and fine-scale copy number abnormalities (CNA) together with their corresponding allele distribution patterns. We identified a total of 258 cases (49%) with chromosome 21-associated CNA, a number that is perhaps lower-than-expected because ETV6-RUNX1-positive cases (11%) were significantly underrepresented in this array-analyzed cohort. Our most interesting observations relate to hyperdiploid leukemias with tetra- and pentasomies of chromosome 21 that develop in constitutionally trisomic patients. Utilizing comparative short tandem repeat analyses, we were able to prove that switches in the array-derived allele patterns are in fact meiotic recombination sites, which only become evident in patients with inborn trisomies that result from a meiosis 1 error. The detailed analysis of such cases may eventually provide important clues about the respective maldistribution mechanisms and the operative relevance of chromosome 21-specific regions in hyperdiploid leukemias.

4.
Mol Cytogenet ; 11: 3, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29344090

RESUMO

BACKGROUND: Translocations of the IGH locus on 14q32.3 are present in about 8% of patients with chronic lymphocytic leukemia (CLL) and contribute to leukemogenesis by deregulating the expression of the IGH-partner genes. Identification of these genes and investigation of the downstream effects of their deregulation can reveal disease-causing mechanisms. CASE PRESENTATION: We report on the molecular characterization of a novel t(12;14)(q23.2;q32.3) in CLL. As a consequence of the rearrangement ASCL1 was brought into proximity of the IGHJ-Cµ enhancer and was highly overexpressed in the aberrant B-cells of the patient, as shown by qPCR and immunohistochemistry. ASCL1 encodes for a transcription factor acting as a master regulator of neurogenesis, is overexpressed in neuroendocrine tumors and a promising therapeutic target in small cell lung cancer (SCLC). Its overexpression has also been recently reported in acute adult T-cell leukemia/lymphoma.To examine possible downstream effects of the ASCL1 upregulation in CLL, we compared the gene expression of sorted CD5+ cells of the translocation patient to that of CD19+ B-cells from seven healthy donors and detected 176 significantly deregulated genes (Fold Change ≥2, FDR p ≤ 0.01). Deregulation of 55 genes in our gene set was concordant with at least two studies comparing gene expression of normal and CLL B-lymphocytes. INSM1, a well-established ASCL1 target in the nervous system and SCLC, was the gene with the strongest upregulation (Fold Change = 209.4, FDR p = 1.37E-4).INSM1 encodes for a transcriptional repressor with extranuclear functions, implicated in neuroendocrine differentiation and overexpressed in the majority of neuroendocrine tumors. It was previously shown to be induced in CLL cells but not in normal B-cells upon treatment with IL-4 and to be overexpressed in CLL cells with unmutated versus mutated IGHV genes. Its role in CLL is still unexplored. CONCLUSION: We identified ASCL1 as a novel IGH-partner gene in CLL. The neural transcription factor was strongly overexpressed in the patient's CLL cells. Microarray gene expression analysis revealed the strong upregulation of INSM1, a prominent ASCL1 target, which was previously shown to be induced in CLL cells upon IL-4 treatment. We propose further investigation of the expression and potential role of INSM1 in CLL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA