Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Curr Issues Mol Biol ; 46(5): 4417-4436, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38785536

RESUMO

Climate change is dramatically increasing the overall area of saline soils around the world, which is increasing by approximately two million hectares each year. Soil salinity decreases crop yields and, thereby, makes farming less profitable, potentially causing increased poverty and hunger in many areas. A solution to this problem is increasing the salt tolerance of crop plants. Transcription factors (TFs) within crop plants represent a key to understanding salt tolerance, as these proteins play important roles in the regulation of functional genes linked to salt stress. The basic leucine zipper (bZIP) TF has a well-documented role in the regulation of salt tolerance. To better understand how bZIP TFs are linked to salt tolerance, we performed a genome-wide analysis in wheat using the Chinese spring wheat genome, which has been assembled by the International Wheat Genome Sequencing Consortium. We identified 89 additional bZIP gene sequences, which brings the total of bZIP gene sequences in wheat to 237. The majority of these 237 sequences included a single bZIP protein domain; however, different combinations of five other domains also exist. The bZIP proteins are divided into ten subfamily groups. Using an in silico analysis, we identified five bZIP genes (ABF2, ABF4, ABI5, EMBP1, and VIP1) that were involved in regulating salt stress. By scrutinizing the binding properties to the 2000 bp upstream region, we identified putative functional genes under the regulation of these TFs. Expression analyses of plant tissue that had been treated with or without 100 mM NaCl revealed variable patterns between the TFs and functional genes. For example, an increased expression of ABF4 was correlated with an increased expression of the corresponding functional genes in both root and shoot tissues, whereas VIP1 downregulation in root tissues strongly decreased the expression of two functional genes. Identifying strategies to sustain the expression of the functional genes described in this study could enhance wheat's salt tolerance.

2.
Proteins ; 89(11): 1530-1540, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34240464

RESUMO

Interaction between protein and ligands are ubiquitous in a biological cell, and understanding these interactions at the atom level in protein-ligand complexes is crucial for structural bioinformatics and drug discovery. Here, we present a web-based protein-ligand interaction application named Ligand Binding Site Comparison (LiBiSCo) for comparing the amino acid residues interacting with atoms of a ligand molecule between different protein-ligand complexes available in the Protein Data Bank (PDB) database. The comparison is performed at the ligand atom level irrespectively of having binding site similarity or not between the protein structures of interest. The input used in LiBiSCo is one or several PDB IDs of protein-ligand complex(es) and the tool returns a list of identified interactions at ligand atom level including both bonded and non-bonded interactions. A sequence profile for the interaction for each ligand atoms is provided as a WebLogo. The LiBiSco is useful in understanding ligand binding specificity and structural promiscuity among families that are structurally unrelated. The LiBiSCo tool can be accessed through https://albiorix.bioenv.gu.se/LiBiSCo/HomePage.py.


Assuntos
Descoberta de Drogas/métodos , Domínios e Motivos de Interação entre Proteínas , Proteínas/química , Software , Domínio Catalítico , Biologia Computacional/métodos , Bases de Dados de Proteínas , Humanos , Internet , Ligantes , Ligação Proteica
3.
BMC Plant Biol ; 20(1): 18, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931695

RESUMO

BACKGROUND: Triticum aestivum (wheat) is one of the world's oldest crops and has been used for >8000 years as a food crop in North Africa, West Asia and Europe. Today, wheat is one of the most important sources of grain for humans, and is cultivated on greater areas of land than any other crop. As the human population increases and soil salinity becomes more prevalent, there is increased pressure on wheat breeders to develop salt-tolerant varieties in order to meet growing demands for yield and grain quality. Here we developed a mutant wheat population using the moderately salt-tolerant Bangladeshi variety BARI Gom-25, with the primary goal of further increasing salt tolerance. RESULTS: After titrating the optimal ethyl methanesulfonate (EMS) concentration, ca 30,000 seeds were treated with 1% EMS, and 1676 lines, all originating from single seeds, survived through the first four generations. Most mutagenized lines showed a similar phenotype to BARI Gom-25, although visual differences such as dwarfing, giant plants, early and late flowering and altered leaf morphology were seen in some lines. By developing an assay for salt tolerance, and by screening the mutagenized population, we identified 70 lines exhibiting increased salt tolerance. The selected lines typically showed a 70% germination rate on filter paper soaked in 200 mM NaCl, compared to 0-30% for BARI Gom-25. From two of the salt-tolerant OlsAro lines (OA42 and OA70), genomic DNA was sequenced to 15x times coverage. A comparative analysis against the BARI Gom-25 genomic sequence identified a total of 683,201 (OA42), and 768,954 (OA70) SNPs distributed throughout the three sub-genomes (A, B and D). The mutation frequency was determined to be approximately one per 20,000 bp. All the 70 selected salt-tolerant lines were tested for root growth in the laboratory, and under saline field conditions in Bangladesh. The results showed that all the lines selected for tolerance showed a better salt tolerance phenotype than both BARI Gom-25 and other local wheat varieties tested. CONCLUSION: The mutant wheat population developed here will be a valuable resource in the development of novel salt-tolerant varieties for the benefit of saline farming.


Assuntos
Produtos Agrícolas/genética , Tolerância ao Sal/genética , Triticum/genética , Bangladesh , Metanossulfonato de Etila , Mutagênese/genética , Mutagênicos , Taxa de Mutação , Fenótipo
4.
BMC Microbiol ; 20(1): 93, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32295519

RESUMO

BACKGROUND: Mycobacterium tuberculosis resides inside host macrophages during infection and adapts to resilient stresses generated by the host immune system. As a response, M. tuberculosis codes for short-chain dehydrogenases/reductases (SDRs). These SDRs are nicotinamide adenine dinucleotide-reliant oxidoreductases involved in cell homeostasis. The precise function of oxidoreductases in bacteria especially M. tuberculosis were not fully explored. This study aimed to know the detail functional role of one of the oxidoreductase Rv0148 in M. tuberculosis. RESULTS: In silico analysis revealed that Rv0148 interacts with Htdy (Rv3389) and the protein interactions were confirmed using far western blot. Gene knockout mutant of Rv0148 in M. tuberculosis was constructed by specialized transduction. Macrophage cell line infection with this knockout mutant showed increased expression of pro-inflammatory cytokines. This knockout mutant is sensitive to oxidative, nitrogen, redox and electron transport inhibitor stress agents. Drug susceptibility testing of the deletion mutant showed resistance to first-line drugs such as streptomycin and ethambutol and second-line aminoglycosides such as amikacin and kanamycin. Based on interactorme analysis for Rv0148 using STRING database, we identified 220 most probable interacting partners for Htdy protein. In the Rv0148 knockout mutants, high expression of htdy was observed and we hypothesize that this would have perturbed the interactome thus resulting in drug resistance. Finally, we propose that Rv0148 and Htdy are functionally interconnected and involved in drug resistance and cell homeostasis of M. tuberculosis. CONCLUSIONS: Our study suggests that Rv0148 plays a significant role in various functional aspects such as intermediatory metabolism, stress, homeostasis and also in drug resistance.


Assuntos
Farmacorresistência Bacteriana Múltipla , Enoil-CoA Hidratase/metabolismo , Mycobacterium tuberculosis/crescimento & desenvolvimento , Oxirredutases/genética , Oxirredutases/metabolismo , Mapeamento de Interação de Proteínas/métodos , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Simulação por Computador , Enoil-CoA Hidratase/química , Técnicas de Inativação de Genes , Homeostase , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Oxirredutases/química , Conformação Proteica , Mapas de Interação de Proteínas , Células THP-1
5.
Proteins ; 86(9): 990-1000, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30051500

RESUMO

HIV protease, an essential enzyme for viral particle maturation, is an important drug target of HIV. Its structural conformation is a key determinant of both biological function as well as efficient binding of protease inhibitor molecules. In the present study we analyzed 471 crystal structures of HIV-1 protease to understand the conformational changes induced by mutations or binding of various ligands and substrates. We performed principal component analysis on the ensembles of the HIV-1 protease structures to explore the conformational landscapes. The study identified structural differences between drug resistant and drug sensitive protease structures. Conformational changes were identified in the A and B chains of homo-dimeric HIV protease structures having different combinations of mutations, and also rigidity in the binding conformation of HIV drugs within the active site of the protein.© 2018 Wiley Periodicals, Inc.


Assuntos
Inibidores da Protease de HIV/química , Protease de HIV/química , HIV-1/enzimologia , Modelos Moleculares , Análise de Componente Principal , Bases de Dados de Proteínas , Farmacorresistência Viral , Protease de HIV/genética , Humanos , Ligantes , Mutação , Ligação Proteica , Conformação Proteica , Multimerização Proteica
6.
J Theor Biol ; 420: 259-266, 2017 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-27717843

RESUMO

Lipoic acid synthase (LIAS) is an iron-sulfur cluster mitochondrial enzyme which catalyzes the final step in the de novo pathway for the biosynthesis of lipoic acid, a potent antioxidant. Recently there has been significant interest in its role in metabolic diseases and its deficiency in LIAS expression has been linked to conditions such as diabetes, atherosclerosis and neonatal-onset epilepsy, suggesting a strong inverse correlation between LIAS reduction and disease status. In this study we use a bioinformatics approach to predict its structure, which would be helpful to understanding its role. A homology model for LIAS protein was generated using X-ray crystallographic structure of Thermosynechococcus elongatus BP-1 (PDB ID: 4U0P). The predicted structure has 93% of the residues in the most favour region of Ramachandran plot. The active site of LIAS protein was mapped and docked with S-Adenosyl Methionine (SAM) using GOLD software. The LIAS-SAM complex was further refined using molecular dynamics simulation within the subsite 1 and subsite 3 of the active site. To the best of our knowledge, this is the first study to report a reliable homology model of LIAS protein. This study will facilitate a better understanding mode of action of the enzyme-substrate complex for future studies in designing drugs that can target LIAS protein.


Assuntos
Modelos Moleculares , Homologia de Sequência de Aminoácidos , Sulfurtransferases/química , Domínio Catalítico , Biologia Computacional/métodos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , S-Adenosilmetionina/química , Homologia Estrutural de Proteína , Ácido Tióctico/biossíntese
7.
Cells ; 12(10)2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37408265

RESUMO

Large and rapidly increasing areas of salt-affected soils are posing major challenges for the agricultural sector. Most fields used for the important food crop Triticum aestivum (wheat) are expected to be salt-affected within 50 years. To counter the associated problems, it is essential to understand the molecular mechanisms involved in salt stress responses and tolerance, thereby enabling their exploitation in the development of salt-tolerant varieties. The myeloblastosis (MYB) family of transcription factors are key regulators of responses to both biotic and abiotic stress, including salt stress. Thus, we used the Chinese spring wheat genome assembled by the International Wheat Genome Sequencing Consortium to identify putative MYB proteins (719 in total). Protein families (PFAM) analysis of the MYB sequences identified 28 combinations of 16 domains in the encoded proteins. The most common consisted of MYB_DNA-binding and MYB-DNA-bind_6 domains, and five highly conserved tryptophans were located in the aligned MYB protein sequence. Interestingly, we found and characterized a novel 5R-MYB group in the wheat genome. In silico studies showed that MYB transcription factors MYB3, MYB4, MYB13 and MYB59 are involved in salt stress responses. qPCR analysis confirmed upregulation of the expression of all these MYBs in both roots and shoots of the wheat variety BARI Gom-25 (except MYB4, which was downregulated in roots) under salt stress. Moreover, we identified nine target genes involved in salt stress that are regulated by the four MYB proteins, most of which have cellular locations and are involved in catalytic and binding activities associated with various cellular and metabolic processes.


Assuntos
Fatores de Transcrição , Triticum , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/metabolismo , Sequência de Aminoácidos , Estresse Salino/genética , Estresse Fisiológico/genética
8.
Front Microbiol ; 14: 1152206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020719

RESUMO

The functional significance of the HIV-1 Antisense Protein (ASP) has been a paradox since its discovery. The expression of this protein in HIV-1-infected cells and its involvement in autophagy, transcriptional regulation, and viral latency have sporadically been reported in various studies. Yet, the definite role of this protein in HIV-1 infection remains unclear. Deciphering the 3D structure of HIV-1 ASP would throw light on its potential role in HIV lifecycle and host-virus interaction. Hence, using extensive molecular modeling and dynamics simulation for 200 ns, we predicted the plausible 3D-structures of ASP from two reference strains of HIV-1 namely, Indie-C1 (subtype-C) and NL4-3 (subtype-B) so as to derive its functional implication through structural domain analysis. In spite of sequence and structural differences in subtype B and C ASP, both structures appear to share common domains like the Von Willebrand Factor Domain-A (VWFA), Integrin subunit alpha-X (ITGSX), and ETV6-Transcriptional repressor, thereby reiterating the potential role of HIV-1 ASP in transcriptional repression and autophagy, as reported in earlier studies. Gromos-based cluster analysis of the centroid structures also reassured the accuracy of the prediction. This is the first study to elucidate a highly plausible structure for HIV-1 ASP which could serve as a feeder for further experimental validation studies.

9.
J Biomol Struct Dyn ; 40(16): 7191-7204, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33754946

RESUMO

Soil salinity and the resulting salt stress it imposes on crop plants is a major problem for modern agriculture. Understanding how salt tolerance mechanisms in plants are regulated is therefore important. One regulatory mechanism is the APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factor family, including dehydration responsive element binding (DREB) transcription factors. By binding to DNA, specifically upstream of genes that play roles in salt tolerance pathways, DREB proteins upregulate expression of these genes. DREB in Triticum aestivum (wheat) cluster in sub-groups and in this study by scanning the recently extended predicted proteome of wheat for DREB, we increased the number of members of this sub-family. Using the wheat genome, we identified 576 genes coding for the AP2 domain of which 508 were identified to have one AP2 domain, a characteristic of the DREB/ERF subfamily. We confirmed the existing four sub-groups by sequence-based phylogenetic analyses but also identified 32 new DREB subfamily members, not belonging to any known sub-group. Transcription factor profile inference analysis identified two genes, TraesCS2B02G002700 and TraesCS2D02G015200, being homologous to DREB1A of Arabidopsis thaliana. Based on molecular simulation (25 ns) analysis, TraesCS2B02G002700 with a CCGAC motif was observed to interact very stably with DNA. In silico mutational analysis at the 19th position in the DREB domain of TraesCS2B02G002700-DNA complex indicated this as a stable part for recognizing and forming interaction with DNA. Moreover, six target genes were predicted having an upstream CCGAC motif regulated by TraesCS2B02G002700. Our study provides an overall framework for exploring the transcription factors in plants and identifying e.g. potential salt stress target genes.Communicated by Ramaswamy H. Sarma.


Assuntos
Arabidopsis , Fatores de Transcrição , Arabidopsis/genética , Proteínas de Transporte/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/genética , Triticum/metabolismo
10.
Life (Basel) ; 12(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36556447

RESUMO

MSALigMap (Multiple Sequence Alignment Ligand Mapping) is a tool for mapping active-site amino-acid residues that bind selected ligands on to target protein sequences of interest. Users can also provide novel sequences (unavailable in public databases) for analysis. MSALigMap is written in Python. There are several tools and servers available for comparing and mapping active-site amino-acid residues among protein structures. However, there has not previously been a tool for mapping ligand binding amino-acid residues onto protein sequences of interest. Using MSALigMap, users can compare multiple protein sequences, such as those from different organisms or clinical strains, with sequences of proteins with crystal structures in PDB that are bound with the ligand/drug and DNA of interest. This allows users to easily map the binding residues and to predict the consequences of different mutations observed in the binding site. The MSALigMap server can be accessed at https://albiorix.bioenv.gu.se/MSALigMap/HomePage.py.

11.
RSC Chem Biol ; 3(11): 1342-1358, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36349220

RESUMO

Proteins can self-assemble into amyloid fibrils or amorphous aggregates and thereby cause disease. Molecular chaperones can prevent both these types of protein aggregation, but to what extent the respective mechanisms are overlapping is not fully understood. The BRICHOS domain constitutes a disease-associated chaperone family, with activities against amyloid neurotoxicity, fibril formation, and amorphous protein aggregation. Here, we show that the activities of BRICHOS against amyloid-induced neurotoxicity and fibril formation, respectively, are oppositely dependent on a conserved aspartate residue, while the ability to suppress amorphous protein aggregation is unchanged by Asp to Asn mutations. The Asp is evolutionarily highly conserved in >3000 analysed BRICHOS domains but is replaced by Asn in some BRICHOS families. The conserved Asp in its ionized state promotes structural flexibility and has a pK a value between pH 6.0 and 7.0, suggesting that chaperone effects can be differently affected by physiological pH variations.

12.
J Biomol Struct Dyn ; 38(6): 1697-1710, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31094664

RESUMO

Isoniazid is an important antitubercular molecule identified as a drug of choice in tuberculosis treatment. As such, INH is an inactive prodrug; it acquires an active conformation by forming an adduct with NAD. The adduct targets inhA protein, a reductase responsible for fatty acid chain elongation in the cell wall of Mycobacterium tuberculosis. Resistance to INH is majorly contributed by mutations in inhA, katG and geneic and non-geneic regions associated with efflux genes. Despite being widespread, the mechanism of resistance remains unknown in ∼15% of INH-resistant strains. Studies report that an intracellular increase in NADH concentration prevents inhA inhibition, leading to INH resistance. In the pursuit of finding possible resistance mechanisms, we set out to find NAD binding proteins to explore similarities in structure and NAD binding property of these proteins with that of inhA. We identified 172 NAD binding proteins, of which 53 were identified to have sequence or structural similarity to inhA. By performing docking analysis on selected proteins, we identified INH-adduct to have good binding affinity despite very minimal structural similarity to inhA. This analysis was further supported by principal component analysis, which identified 65 proteins with NAD binding conformation similar to that of inhA. These findings prompt us to hypothesize that upon exposure to INH, bacteria tries to reduce inhA susceptibility by inducing expression of these NAD binding proteins through increase in NADH concentration. This in turn favours off-target binding and leads to decreased binding and potency of INH, thus contributing indirectly to INH resistance.Communicated by Ramaswamy H. Sarma.


Assuntos
Isoniazida , Mycobacterium tuberculosis , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Resistência a Medicamentos , Farmacorresistência Bacteriana , Isoniazida/farmacologia , Mutação , NAD
13.
Front Microbiol ; 11: 1182, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695072

RESUMO

The World Health Organization (WHO) has developed specific guidelines for critical concentrations (CCs) of antibiotics used for tuberculosis (TB) treatment, which is universally followed for drug susceptibility testing (DST) of clinical specimens. However, the CC of drugs can differ significantly among the mycobacterial species based on the population, geographic location, and the prevalence of the infecting strain in a particular area. The association between CC and the minimal inhibitory concentration (MIC) of anti-TB drugs is poorly understood. In this study, we assessed the MICs of anti-TB drugs, including isoniazid (INH), rifampicin (RMP), moxifloxacin (MXF), ethambutol (ETH), and p-aminosalicylic acid (PAS) on drug-sensitive Mtb isolates from pulmonary TB patients in South India. The MIC assays performed using solid- and liquid-growth media showed changes in the CC of a few of the tested antibiotics compared with the WHO-recommended levels. Our observation suggests that the WHO guidelines could potentially lead to overdiagnosis of drug-resistant cases, which can result in inappropriate therapeutic decisions. To evaluate the correlation between drug-resistance and CC, we performed the whole-genome sequencing for 16 mycobacterial isolates, including two wild-type and 14 resistant isolates. Our results showed that two of the isolates belonged to the W-Beijing lineage, while the rest were of the East-African-Indian type. We identified a total of 74 mutations, including five novel mutations, which are known to be associated with resistance to anti-TB drugs in these isolates. In our previous study, we determined the serum levels of INH and RMP among the same patients recruited in the current study and estimated the MICs of the corresponding infected isolates in these cases. Using these data and the CCs for INH and RMP from the present study, we performed pharmacodynamics (PD) evaluation. The results show that the PD of RMP was subtherapeutic. Together, these observations emphasize the need for optimizing the drug dosage based on the PD of large-scale studies conducted in different geographical settings.

14.
Comput Biol Chem ; 83: 107131, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31586723

RESUMO

Soil salinization is an increasing global threat to economically important agricultural crops such as bread wheat (Triticum aestivum L.). A main regulator of plants' responses to salt stress is WRKY transcription factors, a protein family that binds to DNA and alters the rate of transcription for specific genes. In this study, we identified 297 WRKY genes in the Chinese Spring wheat genome (Ensembl Plants International Wheat Genome Sequencing Consortium (IWGSC)), of which 126 were identified as putative. We classified 297 WRKY genes into three Groups: I, II (a-e) and III based on phylogenetic analysis. Principal component analysis (PCA) of WRKY proteins using physicochemical properties resulted in a very similar clustering as that observed through phylogenetic analysis. The 5` upstream regions (-2 000 bp) of 107 891 sequences from the wheat genome were used to predict WRKY transcription factor binding sites, and from this we identified 31 296 genes with putative WRKY binding motifs using the Find Individual Motif Occurrences (FIMO) tool. Among these predicted genes, 47 genes were expressed during salt stress according to a literature survey. Thus, we provide insight into the structure and diversity of WRKY domains in wheat and a foundation for future studies of DNA-binding specificity and for analysis of the transcriptional regulation of plants' response to different stressors, such as salt stress, as addressed in this study.


Assuntos
Simulação por Computador , Regulação da Expressão Gênica de Plantas/genética , Genômica , Estresse Salino/genética , Fatores de Transcrição/genética , Triticum/genética , Sítios de Ligação , Filogenia , Análise de Componente Principal
15.
J Microbiol Methods ; 73(1): 18-25, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18272245

RESUMO

The luciferase reporter phages (LRP) show great promise for diagnostic mycobacteriology. Though conventional constructs developed from lytic phages such as D29 and TM4 are highly specific, they lack sensitivity. We have isolated and characterized Che12, the first true temperate phage infecting M. tuberculosis. Since the tuberculosis (TB) cases among HIV infected population result from the reactivation of latent bacilli, it would be useful to develop LRP that can detect dormant bacteria. During dormancy, pathogenic mycobacteria switch their metabolism involving divergent genes than during normal, active growth phase. Since the promoters of these genes can potentially function during dormancy, they were exploited for the construction of novel mycobacterial luciferase reporter phages. The promoters of hsp60, isocitrate lyase (icl), and alpha crystallin (acr) genes from M. tuberculosis were used for expressing firefly luciferase gene (FFlux) in both Che12 and TM4 phages and their efficiency was evaluated in detecting dormant bacteria from clinical isolates of M. tuberculosis. These LRP constructs exhibited detectable luciferase activity in dormant as well as in actively growing M. tuberculosis. The TM4 ts mutant based constructs showed about one log increase in light output in three of the five tested clinical isolates and in M. tuberculosis H37Rv compared to conventional lytic reporter phage, phAE129. By refining the LRP assay format further, an ideal rapid assay can be designed not only to diagnose active and dormant TB but also to differentiate the species and to find their drug susceptibility pattern.


Assuntos
Técnicas Bacteriológicas/métodos , Genes Reporter , Luciferases de Vaga-Lume/metabolismo , Micobacteriófagos/metabolismo , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/virologia , Tuberculose/microbiologia , Chaperonina 60/genética , Replicação do DNA , Humanos , Isocitrato Liase/genética , Cinética , Luciferases de Vaga-Lume/genética , Micobacteriófagos/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiologia , Regiões Promotoras Genéticas , Sensibilidade e Especificidade , Temperatura , Tuberculose/diagnóstico , alfa-Cristalinas/genética
16.
Front Immunol ; 9: 2478, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483247

RESUMO

Human papillomavirus (HPV) is a viral infection with skin-to-skin based transmission mode. HPV annually caused over 500,000 cancer cases including cervical, anogenital and oropharyngeal cancer among others. HPV vaccination has become a public-health concern, worldwide, to prevent the cases of HPV infections including precancerous lesions, cervical cancers, and genital warts especially in adolescent female and male population by launching national programs with international alliances. Currently, available prophylactic and therapeutic vaccines are expensive to be used in developing countries for vaccination programs. The recent progress in immunotherapy, biotechnology, recombinant DNA technology and molecular biology along with alternative and complementary medicinal systems have paved novel ways and valuable opportunities to design and develop effective prophylactic and therapeutic vaccines, drugs and treatment approach to counter HPV effectively. Exploration and more researches on such advances could result in the gradual reduction in the incidences of HPV cases across the world. The present review presents a current global scenario and futuristic prospects of the advanced prophylactic and therapeutic approaches against HPV along with recent patents coverage of the progress and advances in drugs, vaccines and therapeutic regimens to effectively combat HPV infections and its cancerous conditions.


Assuntos
Antivirais/uso terapêutico , Condiloma Acuminado/imunologia , Neoplasias Orofaríngeas/imunologia , Papillomaviridae/fisiologia , Infecções por Papillomavirus/imunologia , Vacinas contra Papillomavirus/imunologia , Neoplasias do Colo do Útero/imunologia , Adolescente , Condiloma Acuminado/prevenção & controle , Desenho de Fármacos , Desenvolvimento de Medicamentos , Feminino , Humanos , Programas de Imunização , Masculino , Neoplasias Orofaríngeas/prevenção & controle , Infecções por Papillomavirus/tratamento farmacológico , Neoplasias do Colo do Útero/prevenção & controle , Vacinação
17.
AIDS Res Hum Retroviruses ; 33(9): 900-901, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28537425

RESUMO

Codon usage has been identified as one of the most important factors that influence gene expression. The frequencies with which the different codons are used vary significantly between different organisms and also between the genes within the same organism. HIV has a remarkable nucleotide composition with an above average percentage of "A" nucleotides resulting in a codon usage pattern different from that of the human host. In this study, we compared the codon usage pattern of HIV-1 genes among different groups of HIV disease progressors to understand the influence of differential codon usage pattern on the pathogenic manifestation in the host.


Assuntos
Códon/genética , Genes Virais/genética , Genes tat/genética , Infecções por HIV/genética , HIV-1/genética , Progressão da Doença , Expressão Gênica/genética , Infecções por HIV/patologia , Infecções por HIV/virologia , Humanos
18.
AIDS Res Hum Retroviruses ; 33(3): 298-307, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27599904

RESUMO

HIV-1 and HIV-2 are closely related retroviruses with differences in pathogenicity and geographic distribution. HIV-2 infection is associated with slower disease progression and transmission, longer latency period, low or undetectable plasmatic viral loads, and reduced likelihood of progression to AIDS, compared to HIV-1. In this investigation, we analyzed HIV-2 genes and genomes and compared them with that of HIV-1 belonging to various subtypes. Comparative analysis of the effective number of codons (ENC) for each of the nine genes of the two viruses revealed that the tat gene of HIV-2 had a higher ENC value compared to HIV-1 tat, reflecting lower levels of expression of HIV-2 tat. Lower levels of tat protein particularly during the early stages of infection could result in a lower viral load, lower viral set point, and delayed progression of disease in HIV-2-infected individuals compared to HIV-1-infected subjects. Furthermore, the GC3 composition of the regulatory genes of HIV-2 was ≥50%, suggesting a firm effort by these viruses to adapt themselves to evolutionary survival. We hypothesize that differential codon usage could be one of the possible factors that could contribute to the diminished pathogenicity of HIV-2 in the host as compared to HIV-1.


Assuntos
Códon , HIV-1/genética , HIV-2/genética , Nucleotídeos/análise , Composição de Bases , Expressão Gênica , Genes Virais , Genoma Viral , Humanos
19.
J Mol Model ; 22(8): 180, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27411553

RESUMO

Mycobacteriophages produce lysins that break down the host cell wall at the end of lytic cycle to release their progenies. The ability to lyse mycobacterial cells makes the lysins significant. Mycobacteriophage Che12 is the first reported temperate phage capable of infecting and lysogenising Mycobacterium tuberculosis. Gp11 of Che12 was found to have Chitinase domain that serves as endolysin (lysin A) for Che12. Structure of gp11 was modeled and evaluated using Ramachandran plot in which 98 % of the residues are in the favored and allowed regions. Che12 lysin A was predicted to act on NAG-NAM-NAG molecules in the peptidoglycan of cell wall. The tautomers of NAG-NAM-NAG molecule were generated and docked with lysin A. The stability and binding affinity of lysin A - NAG-NAM-NAG tautomers were studied using molecular dynamics simulations.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Micobacteriófagos/enzimologia , Mycobacterium tuberculosis/virologia , Peptidoglicano/química , Proteínas Virais/química , Homologia Estrutural de Proteína
20.
J Mol Graph Model ; 67: 20-32, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27155814

RESUMO

Rifampicin (RIF) an essential first-line anti-tuberculosis (TB) drug, resistance to RIF is a potential threat to TB control program and widely considered as surrogate marker for detection of multi-drug resistant-TB (MDR-TB), molecular understanding of which is the utmost need of the hour. Mutations at RIF resistance-determining region (RRDR) of 81-bp in the rpoB gene coding for ß subunit or RpoB protein is the major cause of RIF resistance in Mycobacterium tuberculosis (MTB). Mutation at positions 526 and 531 are generally associated with high-level RIF resistance and at codons 516, 521 and 533 with low-level resistance. Thus, in order to understand the interactions between the clinical mutants (MTs) of RpoB and RIF which are responsible for mediating both levels of RIF resistance from MTB. In the present study, models of wild type (WT) and seven MTs (D516V, L521M, H526D, H526R, H526Y, S531L and L533P) of RpoB from MTB were generated using crystal structure of 2A68 and 4KBM as templates, for deducing 3 domains structure. Molecular docking between RpoB proteins and RIF was carried out, which showed higher values for WT compared to MTs. The high score in WT may be due to the presence of favorable interactions with RIF and MT-L521M which lacks in other MTs. Molecular dynamics (MD) simulation was performed for over 10 nanoseconds, which suggest the root mean square deviation (RMSD) was more and root mean square fluctuation (RMSF) was less in WT compared to MTs. The ligand RMSD exhibited very unique deviation with the MT-D516V compared to other MTs and WT. The RMSF for MTs such as H526R-H526D, L521M and D516V were higher for residues such as 152, 265, 352, 402, 513, 552, and 577 compared to WT. Hydrogen bond interactions at RIF binding site after MD simulations were found comparatively lower in WT than MTs. Similarly, the binding energy of WT was observed to be lesser in comparison to MTs. All MTs demonstrated certain (2Å) degree of structural deviation from the WT. Overall, these results suggest that RIF binding ability shows differences between WT and MTs, which could be because of different substitutions affecting the conformation of the MT proteins, leading to changes in binding interactions with RIF, eventually to the cause of RIF resistance.


Assuntos
Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , Farmacorresistência Bacteriana/genética , Mutação/genética , Mycobacterium tuberculosis/genética , Rifampina/farmacologia , Proteínas de Bactérias/química , Sítios de Ligação , RNA Polimerases Dirigidas por DNA/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Reprodutibilidade dos Testes , Rifampina/química , Termodinâmica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA