Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(20): e2303846121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709920

RESUMO

Habitat loss and isolation caused by landscape fragmentation represent a growing threat to global biodiversity. Existing theory suggests that the process will lead to a decline in metapopulation viability. However, since most metapopulation models are restricted to simple networks of discrete habitat patches, the effects of real landscape fragmentation, particularly in stochastic environments, are not well understood. To close this major gap in ecological theory, we developed a spatially explicit, individual-based model applicable to realistic landscape structures, bridging metapopulation ecology and landscape ecology. This model reproduced classical metapopulation dynamics under conventional model assumptions, but on fragmented landscapes, it uncovered general dynamics that are in stark contradiction to the prevailing views in the ecological and conservation literature. Notably, fragmentation can give rise to a series of dualities: a) positive and negative responses to environmental noise, b) relative slowdown and acceleration in density decline, and c) synchronization and desynchronization of local population dynamics. Furthermore, counter to common intuition, species that interact locally ("residents") were often more resilient to fragmentation than long-ranging "migrants." This set of findings signals a need to fundamentally reconsider our approach to ecosystem management in a noisy and fragmented world.


Assuntos
Biodiversidade , Ecossistema , Dinâmica Populacional , Conservação dos Recursos Naturais , Modelos Biológicos , Animais , Modelos Teóricos
2.
Proc Natl Acad Sci U S A ; 120(31): e2212061120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487080

RESUMO

Ecologists have long sought to understand how diversity and structure mediate the stability of whole ecosystems. For high-diversity food webs, the interactions between species are typically represented using matrices with randomly chosen interaction strengths. Unfortunately, this procedure tends to produce ecological systems with no underlying equilibrium solution, and so ecological inferences from this approach may be biased by nonbiological outcomes. Using recent computationally efficient methodological advances from metabolic networks, we employ for the first time an inverse approach to diversity-stability research. We compare classical random interaction matrices of realistic food web topology (hereafter the classical model) to feasible, biologically constrained, webs produced using the inverse approach. We show that an energetically constrained feasible model yields a far higher proportion of stable high-diversity webs than the classical random matrix approach. When we examine the energetically constrained interaction strength distributions of these matrix models, we find that although these diverse webs have consistent negative self-regulation, they do not require strong self-regulation to persist. These energetically constrained diverse webs instead show an increasing preponderance of weak interactions that are known to increase local stability. Further examination shows that some of these weak interactions naturally appear to arise in the model food webs from a constraint-generated realistic generalist-specialist trade-off, whereby generalist predators have weaker interactions than more specialized species. Additionally, the inverse technique we present here has enormous promise for understanding the role of the biological structure behind stable high-diversity webs and for linking empirical data to the theory.


Assuntos
Ecossistema , Cadeia Alimentar , Internet
3.
Proc Natl Acad Sci U S A ; 120(51): e2308820120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38091288

RESUMO

In an ecosystem, environmental changes as a result of natural and human processes can cause some key parameters of the system to change with time. Depending on how fast such a parameter changes, a tipping point can occur. Existing works on rate-induced tipping, or R-tipping, offered a theoretical way to study this phenomenon but from a local dynamical point of view, revealing, e.g., the existence of a critical rate for some specific initial condition above which a tipping point will occur. As ecosystems are subject to constant disturbances and can drift away from their equilibrium point, it is necessary to study R-tipping from a global perspective in terms of the initial conditions in the entire relevant phase space region. In particular, we introduce the notion of the probability of R-tipping defined for initial conditions taken from the whole relevant phase space. Using a number of real-world, complex mutualistic networks as a paradigm, we find a scaling law between this probability and the rate of parameter change and provide a geometric theory to explain the law. The real-world implication is that even a slow parameter change can lead to a system collapse with catastrophic consequences. In fact, to mitigate the environmental changes by merely slowing down the parameter drift may not always be effective: Only when the rate of parameter change is reduced to practically zero would the tipping be avoided. Our global dynamics approach offers a more complete and physically meaningful way to understand the important phenomenon of R-tipping.

4.
Proc Natl Acad Sci U S A ; 120(11): e2214055120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36877850

RESUMO

Sudden changes in populations are ubiquitous in ecological systems, especially under perturbations. The agents of global change may increase the frequency and severity of anthropogenic perturbations, but complex populations' responses hamper our understanding of their dynamics and resilience. Furthermore, the long-term environmental and demographic data required to study those sudden changes are rare. Fitting dynamical models with an artificial intelligence algorithm to population fluctuations over 40 y in a social bird reveals that feedback in dispersal after a cumulative perturbation drives a population collapse. The collapse is well described by a nonlinear function mimicking social copying, whereby dispersal made by a few individuals induces others to leave the patch in a behavioral cascade for decision-making to disperse. Once a threshold for deterioration of the quality of the patch is crossed, there is a tipping point for a social response of runaway dispersal corresponding to social copying feedback. Finally, dispersal decreases at low population densities, which is likely due to the unwillingness of the more philopatric individuals to disperse. In providing the evidence of copying for the emergence of feedback in dispersal in a social organism, our results suggest a broader impact of self-organized collective dispersal in complex population dynamics. This has implications for the theoretical study of population and metapopulation nonlinear dynamics, including population extinction, and managing of endangered and harvested populations of social animals subjected to behavioral feedback loops.


Assuntos
Algoritmos , Inteligência Artificial , Animais , Densidade Demográfica , Ecossistema
5.
Ecol Lett ; 27(6): e14458, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877741

RESUMO

Most ecological models are based on the assumption that species interact in pairs. Diverse communities, however, can have higher-order interactions, in which two or more species jointly impact the growth of a third species. A pitfall of the common pairwise approach is that it misses the higher-order interactions potentially responsible for maintaining natural diversity. Here, we explore the stability properties of systems where higher-order interactions guarantee that a specified set of abundances is a feasible equilibrium of the dynamics. Even these higher-order interactions which lead to equilibria do not necessarily produce stable coexistence. Instead, these systems are more likely to be stable when the pairwise interactions are weak or facilitative. Correlations between the pairwise and higher-order interactions, however, do permit robust coexistence even in diverse systems. Our work not only reveals the challenges in generating stable coexistence through higher-order interactions but also uncovers interaction patterns that can enable diversity.


Assuntos
Modelos Biológicos , Biodiversidade , Ecossistema , Dinâmica Populacional
6.
Am Nat ; 203(3): E92-E106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358808

RESUMO

AbstractPeriodical cicadas live 13 or 17 years underground as nymphs, then emerge in synchrony as adults to reproduce. Developmentally synchronized populations called broods rarely coexist, with one dominant brood locally excluding those that emerge in off years. Twelve modern 17-year cicada broods are believed to have descended from only three ancestral broods following the last glaciation. The mechanisms by which these daughter broods overcame exclusion by the ancestral brood to synchronously emerge in a different year, however, are elusive. Here, we demonstrate that temporal variation in the population density of generalist predators can allow intermittent opportunities for new broods to invade, even though a single brood remains dominant most of the time. We show that this mechanism is consistent, in terms of the type and frequency of brood replacements, with the distribution of periodical cicada broods throughout North America today. Although we investigate one particularly charismatic case study, the mechanisms involved (competitive exclusion, Allee effects, trait variation, predation, and temporal variability) are ubiquitous and could contribute to patterns of species diversity in a range of systems.


Assuntos
Hemípteros , Animais , Comportamento Predatório , Ninfa , América do Norte
7.
J Theor Biol ; 590: 111855, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38789077

RESUMO

Insect outbreaks can cause large scale defoliation of forest trees or destruction of crops, leading to ecosystem degradation and economic losses. Some outbreaks occur simultaneously across large geographic scales and some outbreaks occur periodically every few years across space. Parasitoids are a natural enemy of these defoliators and could help mitigate these pest outbreaks. A holistic understanding of the host-parasitoid interactions in a spatial context would thus enhance our ability to understand, predict and prevent these outbreaks. We use a discrete time deterministic model of the host parasitoid system with populations migrating between 2 patches to elucidate features of spatial host outbreaks. We show that whenever populations persist indefinitely, host outbreaks in both patches can occur alternatively (out of phase) at low migration between patches whereas host outbreaks always occur simultaneously (in phase) in both patches at high migration between patches. We show that our results are robust across a large range of parameters across different modelling approaches used typically to model intraspecific competition among hosts and parasitism, in the host-parasitoid literature. We give an analytical expression for the period of oscillations when the migration is low i.e., when host outbreaks in both patches are out of phase, show it is in agreement with numerical results. We end our paper by showing that we get the same results whether we include the biologically rooted formulations from May et al. (1981) or a general cellular automata model with qualitative rules.


Assuntos
Migração Animal , Interações Hospedeiro-Parasita , Modelos Biológicos , Interações Hospedeiro-Parasita/fisiologia , Animais , Migração Animal/fisiologia , Insetos/parasitologia , Dinâmica Populacional , Ecossistema
8.
Bull Math Biol ; 86(3): 23, 2024 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281273

RESUMO

Dispersive early life stages are common in nature. Although many dispersing organisms ("propagules") are passively moved by outside forces, some improve their chances of successful dispersal through weak movements that exploit the structure of the environment to great effect. The larvae of many coastal marine invertebrates, for instance, swim vertically through the water column to exploit depth-varying currents, food abundance, and predation risk. Several swimming behaviors and their effects on dispersal between habitats are characterized in the literature, yet it remains unclear when and why these behaviors are advantageous. We addressed this gap using a mathematical model of larval dispersal that scored how well behaviors allowed larvae to simultaneously locate habitats, avoid predators, and gather energy. We computed optimal larval behaviors through dynamic programming, and compared those optima against passive floating and three well documented behaviors from the literature. Optimal behaviors often (but not always) resembled the documented ones. However, our model predicted that the behaviors from the literature performed robustly well, if not optimally, across many conditions. Our results shed light on why some larval behaviors are widespread geographically and across species, and underscore the importance of carefully considering the weak movements of otherwise passive propagules when studying dispersal.


Assuntos
Modelos Biológicos , Natação , Animais , Larva , Conceitos Matemáticos , Ecossistema
9.
Ecol Appl ; 33(4): e2850, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942610

RESUMO

In restoration ecology, the Field of Dreams hypothesis posits that restoration efforts that create a suitable environment could lead to the eventual recovery of the remaining aspects of the ecosystem through natural processes. Natural processes following partial restoration has led to ecosystem recovery in both terrestrial and aquatic systems. However, understanding the efficacy of a "Field of Dreams" approach requires a comparison of different approaches to partial restoration in terms of spatial, temporal, and ecological scale with what would happen given more comprehensive restoration efforts. We explore the relative effect of partial restoration and ongoing recovery on restoration efficacy with a dynamical model based on temperate rocky reefs in Northern California. We analyze our model for both the ability and rate of bull kelp forest recovery under different restoration strategies. We compare the efficacy of a partial restoration approach with a more comprehensive restoration effort by exploring how kelp recovery likelihood and rate change with varying intensities of urchin removal and kelp outplanting over different time periods and spatial scales. We find that, in the case of bull kelp forests, setting more favorable initial conditions for kelp recovery by implementing both urchin harvesting and kelp outplanting at the start of the restoration project has a bigger impact on the kelp recovery rate than applying restoration efforts through a longer period of time. Therefore, partial restoration efforts, in terms of spatial and temporal scale, can be significantly more effective when applied across multiple ecological scales in terms of both the capacity and rate for achieving the target outcomes.


Assuntos
Ecossistema , Kelp , Florestas
10.
J Math Biol ; 87(2): 33, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37493847

RESUMO

Understanding and predicting ecological dynamics in the presence of noise remains a substantial and important challenge. This is particularly true in light of the poor quality of much ecological data and the imprecision of many ecological models. As a first approach to this problem, we focus here on a simple system expressed as a discrete time model with 2-cycle behavior, reflecting alternating high and low population sizes. Such dynamics naturally arise in ecological systems with overcompensatory density dependence. We ask how the amount of detail included in the population estimates affects the ability to forecast the likelihood of changes in the phase of oscillation, meaning whether high populations occur in odd or in even years. We adjust the level of detail by converting continuous population levels to simple, coarse-grained descriptions using two-state and four-state models. We also consider a cubic noisy over-compensatory model with three parameters. The focus on phase changes is what distinguishes the question we are asking and the methods we use from more standard time series approaches. Obviously, adding observation states improves the ability to forecast phase shifts. In particular, the four-state model and cubic model outperform the two-state model because they include a transition state, through which the dynamics typically pass during a phase change. Nonetheless, at high noise levels the improvement in forecast skill is relatively modest. Additionally, the frequency of phase changes depends strongly on the noise level, and is much less affected by the parameter determining amplitude in the population model, so phase shift frequencies could possibly be used to infer noise levels.


Assuntos
Ecossistema , Modelos Teóricos , Densidade Demográfica
11.
Proc Natl Acad Sci U S A ; 117(43): 26854-26860, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33055210

RESUMO

Species expanding into new habitats as a result of climate change or human introductions will frequently encounter resident competitors. Theoretical models suggest that such interspecific competition can alter the speed of expansion and the shape of expanding range boundaries. However, competitive interactions are rarely considered when forecasting the success or speed of expansion, in part because there has been no direct experimental evidence that competition affects either expansion speed or boundary shape. Here we demonstrate that interspecific competition alters both expansion speed and range boundary shape. Using a two-species experimental system of the flour beetles Tribolium castaneum and Tribolium confusum, we show that interspecific competition dramatically slows expansion across a landscape over multiple generations. Using a parameterized stochastic model of expansion, we find that this slowdown can persist over the long term. We also find that the shape of the moving range boundary changes continuously over many generations of expansion, first steepening and then becoming shallower, due to the competitive effect of the resident and density-dependent dispersal of the invader. This dynamic boundary shape suggests that current forecasting approaches assuming a constant shape could be misleading. More broadly, our results demonstrate that interactions between competing species can play a large role during range expansions and thus should be included in models and studies that monitor, forecast, or manage expansions in natural systems.


Assuntos
Distribuição Animal , Ecossistema , Tribolium , Animais , Comportamento Competitivo
12.
Ecol Lett ; 25(11): 2347-2358, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36181717

RESUMO

The storage effect is a general explanation for coexistence in a variable environment. Unfortunately, the storage effect is poorly understood, in part because the generality of the storage effect precludes an interpretation that is simultaneously simple, intuitive and correct. Here, we explicate the storage effect by dividing one of its key conditions-covariance between environment and competition-into two pieces, namely that there must be a strong causal relationship between environment and competition, and that the effects of the environment do not change too quickly. This finer-grained definition can explain a number of previous results, including (1) that the storage effect promotes annual plant coexistence when the germination rate fluctuates, but not when the seed yield fluctuates, (2) that the storage effect is more likely to be induced by resource competition than the apparent competition, and (3) why the storage effect arises readily in models with either stage structure or environmental autocorrelation. Additionally, our expanded definition suggests two novel mechanisms by which the temporal storage effect can arise-transgenerational plasticity and causal chains of environmental variables-thus suggesting that the storage effect is a more common phenomenon than previously thought.


Assuntos
Ecossistema , Modelos Biológicos , Dinâmica Populacional , Heurística , Germinação
13.
Ecol Lett ; 25(12): 2573-2583, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36317948

RESUMO

Unexpected population crashes are an important feature of natural systems, yet many observed crashes have not been explained. Two difficulties in explaining population crashes are their relative rarity and the multi-causal nature of ecological systems. We approach this issue with experimental microcosms, with large numbers of replicates of red flour beetle populations (Tribolium castaneum). We determined that population crashes are caused by an interaction between stochasticity and successive episodes of density dependence: demographic stochasticity in oviposition rates occasionally produces a high density of eggs; so high that there are insufficient flour resources for subsequent larvae. This mechanism can explain unexpected population crashes in more general settings: stochasticity 'pushes' population into a regime where density dependence is severely overcompensatory. The interaction between nonlinearity and stochasticity also produces chaotic population dynamics and a double-humped one-generation population map, suggesting further possibilities for unexpected behaviour in a range of systems. We discuss the generality of our proposed mechanism, which could potentially account for previously inexplicable population crashes.


Assuntos
Acidentes de Trânsito , Tribolium , Animais , Feminino , Dinâmica Populacional , Ecossistema , Oviposição
14.
Ecol Lett ; 25(4): 814-827, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35007391

RESUMO

Studies of oscillatory populations have a long history in ecology. A first-principles understanding of these dynamics can provide insights into causes of population regulation and help with selecting detailed predictive models. A particularly difficult challenge is determining the relative role of deterministic versus stochastic forces in producing oscillations. We employ statistical physics concepts, including measures of spatial synchrony, that incorporate patterns at all scales and are novel to ecology, to show that spatial patterns can, under broad and well-defined circumstances, elucidate drivers of population dynamics. We find that when neighbours are coupled (e.g. by dispersal), noisy intrinsic oscillations become distinguishable from noise-induced oscillations at a transition point related to synchronisation that is distinct from the deterministic bifurcation point. We derive this transition point and show that it diverges from the deterministic bifurcation point as stochasticity increases. The concept of universality suggests that the results are robust and widely applicable.


Assuntos
Ecossistema , Modelos Biológicos , Ecologia , Dinâmica Populacional , Processos Estocásticos
15.
Ecol Lett ; 25(2): 366-377, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34818698

RESUMO

Understanding mechanisms of coexistence is a central topic in ecology. Mathematical analysis of models of competition between two identical species moving at different rates of symmetric diffusion in heterogeneous environments show that the slower mover excludes the faster one. The models have not been tested empirically and lack inclusions of a component of directed movement toward favourable areas. To address these gaps, we extended previous theory by explicitly including exploitable resource dynamics and directed movement. We tested the mathematical results experimentally using laboratory populations of the nematode worm, Caenorhabditis elegans. Our results not only support the previous theory that the species diffusing at a slower rate prevails in heterogeneous environments but also reveal that moderate levels of a directed movement component on top of the diffusive movement allow species to coexist. Our results broaden the theory of species coexistence in heterogeneous space and provide empirical confirmation of the mathematical predictions.


Assuntos
Distribuição Animal , Ecologia , Ecossistema , Animais , Modelos Biológicos , Dinâmica Populacional
16.
J Theor Biol ; 549: 111221, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35843441

RESUMO

Invasive species account for incalculable damages worldwide, in both ecological and bioeconomic terms. The question of how a network of invasive populations can be optimally managed is one that deserves further exploration. A study accounting for partial observability and imperfect detection, in particular, could yield useful insights into species eradication efforts. Here, we generalized a simple model system that we developed in previous work. This model consists of three interacting populations with underlying strong Allee effects and stochastic dynamics, inhabiting distinct locations connected by dispersal, which can generate bistability. To explore the stochastic dynamics, we formulated an individual-based modeling approach. Next, using the theory of continuous-time Markov chains, we approximated the original high-dimensional model by a Markov chain with eight states, with each state corresponding to a combination of population thresholds. We then used the reduced model as the core for a powerful decision-making tool, referred to as a Partially Observable Markov Decision Process (POMDP). Analysis of this POMDP indicates when the system results in optimal management outcomes.


Assuntos
Modelos Biológicos , Cadeias de Markov , Dinâmica Populacional , Processos Estocásticos
17.
Ecol Appl ; 32(1): e02488, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34679234

RESUMO

The general predictions of climate impacts on species shifts (e.g., upward shift) cannot directly inform local species conservation, because local-scale studies find divergent patterns instead of a general one. For example, our previous study found three shift patterns with elevation (strong down-, moderate down-, and up-slope shifts) in temperate mountain forests. The divergent shifts are hypothesized to arise from both multivariate environmental variations with elevation and corresponding species-specific responses. To test this hypothesis, we sampled soils and leaves to measure elevation variations in soil conditions and determined plant responses using discriminations against heavier isotopes, carbon (13 C) and nitrogen (15 N). Functional traits of the species studied were also extracted from a public trait dataset. We found that: (1) With low soil water contents at low elevations, only the leaves of up-shifters had lower 13 C discriminations at low vs. high elevations; (2) With low soil P contents at high elevations, only the leaves of moderate down-shifters had higher 15 N discriminations at high vs. low elevations; (3) The leaves of strong down-shifters did not show significant elevation patterns of the discriminations; (4) The contrasting responses among the three types of shifters agree with their functional dissimilarity, suggested by their separate locations in a multitrait space. Taken together, the divergent shifts are associated with the elevation variations in environmental conditions and contrasting plant responses. The contrasting responses could result from the functional dissimilarity among species. Therefore, a detailed understanding of both local environmental variations and species-specific responses can facilitate accurate predictions of species shifts to inform local species conservation.


Assuntos
Plantas , Solo , Clima , Ecossistema , Florestas , Folhas de Planta
18.
J Anim Ecol ; 91(12): 2370-2383, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36264757

RESUMO

Understanding population responses to discrete 'pulsed' environmental disturbances is essential to conservation and adaptive management. Populations of concern can be driven to low levels by disturbance, and understanding interspecific differences in recovery trajectories is necessary for evaluating management options. We analysed single-species models to investigate the demographic and management factors determining the two components of population 'resilience': the magnitude of initial impact on population abundance, and duration of the recovery time. We simulated age-structured populations with density-dependent recruitment, subjected to a pulse disturbance consisting of a period of increased mortality of either the juvenile age class or all age classes, and calculated both impact and return time. For illustration, we used demographic parameters from a suite of 16 fish species. We formulated the model as a renewal equation, allowing us to describe disturbance impacts mathematically as a convolution. We also included nonlinear dynamics, representing populations that recover to a steady state; this is more realistic (in most cases) than prior analyses of resilience in linear models without density-dependence. When the disturbance affected only one or a few young age-classes, longevity was the major life-history determinant of impact and recovery time. Shorter-lived species endured greater impacts when disturbed because each age class is a greater proportion of the population. However, shorter-lived species also had faster recovery times, for the same reason. When disturbance affected adult age-classes, the impact was more immediate and no longer affected by species' longevity, though the effect of longevity on recovery time remained. These results improve our understanding of interspecific differences in resilience and increase our ability to make predictions for adaptive management. Additionally, formulating the problem as a renewal equation and using mathematical convolutions allows us to quantify how disturbances with different time courses (not just an immediate, constant level of disturbance but gradually increasing or decreasing levels of disturbance) would have different effects on population resilience: delayed responses for species in which biomass is concentrated in older age classes, and for disturbances that become progressively more severe.


Entender las respuestas de la población a perturbaciones ambientales, específicamente a pulsadas individuales, es esencial para la conservación y la gestión adaptativa. Las poblaciones de interés pueden reducirse a niveles bajas debido a la perturbación, y es necesario entender las diferencias interespecíficas en las trayectorias de recuperación para evaluar las opciones de gestión. Analizamos modelos para especies individuales para investigar los factores demográficos y de gestión que determinan los dos componentes de la 'resiliencia' de la población: la magnitud del impacto inicial sobre la abundancia de la población y la duración del tiempo de recuperación. Simulamos poblaciones estructuradas por edad con reclutamiento que depende de la densidad, las sometimos a una perturbación pulsada que consiste en un período de mayor mortalidad del grupo etário juvenil o de todos los grupos etários, y calculamos tanto el impacto como el tiempo de retorno. A modo de ilustración, utilizamos parámetros demográficos de un conjunto de 16 especies de peces. Formulamos el modelo como una ecuación de renovación, lo que nos permite describir matemáticamente los impactos de las perturbaciones como una convolución. También incluimos dinámicas no lineales que representan poblaciones que se recuperan hacia un estado estable; esto es más realista (en la mayoría de los casos) que los análisis previos de resiliencia en modelos lineales sin la dependencia de la densidad. Cuando la perturbación ha afectado a uno o a algunos pocos grupos etários jóvenes, la longevidad fue el principal determinante de la historia de vida del impacto y el tiempo de recuperación. Las especies de vida más corta sufrieron mayores impactos cuando fueron perturbadas porque cada grupo etáreo representa una mayor proporción de la población. Sin embargo, las especies con vidas más cortas también tuvieron tiempos de recuperación más rápidos, por la misma razón. Cuando la perturbación afectó a los grupos etários adultos, el impacto fue más inmediato y ya no se vio afectado por la longevidad de las especies, aunque se mantuvo el efecto de la longevidad sobre el tiempo de recuperación. Estos resultados mejoran nuestra comprensión de las diferencias interespecíficas de la resiliencia y aumentan nuestra capacidad para hacer predicciones con fin a la gestión adaptativa. Además, formular el problema como una ecuación de renovación y usar convoluciones matemáticas nos permite cuantificar cómo las perturbaciones con distintos lapsos de tiempo (no solo un nivel de perturbación constante e inmediato, sino niveles de perturbación que aumentan o disminuyen gradualmente) tendrían diferentes efectos sobre la resiliencia de la población: respuestas tardías para especies en las que la biomasa se concentra en grupos etários de mayor edad y para perturbaciones que se vuelven progresivamente más severas.


Assuntos
Dinâmica não Linear , Animais
19.
Bull Math Biol ; 84(9): 102, 2022 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-35964274

RESUMO

During recent years, the study of long transients has been expanded in ecological theory to account for shifts in long-term behavior of ecological systems. These long transients may lead to regime shifts between alternative states that resemble the dynamics of alternative stable states for a prolonged period of time. One dynamic that potentially leads to long transients is the group defense of a resource in a consumer-resource interaction. Furthermore, time lags in the population caused by discrete reproductive pulses have the potential to produce long transients, either independently or in conjunction to the transients caused by the group defense. In this work, we analyze the potential for long transients in a model for a consumer-resource system in which the resource exhibits group defense and reproduces in discrete reproductive pulses. This system exhibits crawl-by transients near the extinction and carrying capacity states of resource, and a transcritical bifurcation, under which a ghost limit cycle appears. We estimate the transient time of our system from these transients using perturbation theory. This work advances an understanding of how systems shift between alternate states and their duration of staying in a given regime and what ecological dynamics may lead to long transients.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Ecossistema , Reprodução
20.
J Math Biol ; 84(3): 16, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35112240

RESUMO

During their lifetimes, individuals in populations pass through different states, and the notion of an occupancy time describes the amount of time an individual spends in a given set of states. Questions related to this idea were studied in a recent paper by Roth and Caswell for cases where the environmental conditions are constant. However, it is truly important to consider the case where environments are changing randomly or in directional way through time, so the transition probabilities between different states change over time, motivating the use of time-dependent stage-structured models. Using absorbing inhomogenous Markov chains and the discrete-time McKendrick-von Foerster equation, we derive explicit formulas for the occupancy time, its expectation, and its higher-order moments for stage-structured models with time-dependent transition rates. The results provide insights into the dynamics of long lived plant or animal populations where individuals transition in both directions between reproductive and non reproductive stages. We apply our approach to study a specific time-dependent model of the Southern Fulmar, and obtain insights into how the number of breeding attempts depends on external conditions that vary through time.


Assuntos
Aves , Modelos Biológicos , Animais , Cadeias de Markov , Dinâmica Populacional , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA