RESUMO
The design, development, and successful implementation of pop-up Langmuir probes installed in the water-cooled divertor of W7-X are described. The probes are controlled by drive coils (actuators) installed behind the divertor plates. These drive coils make use of the magnetic field in W7-X to move the probe tips into and out of the plasma. The drive coils were installed in the vacuum vessel after extensively testing the durability of the coils and analyzing the criteria for safe operation. The probe design is carefully tailored for each of the 36 probe tips in order to be suitable for the different magnetic field configurations used in W7-X and ensure that the probes do not present leading edges to the magnetic flux tubes. An electronic bridge circuit is used for measurement to compensate for the effects of signal propagation time on the long cable lengths used. The diagnostic is integrated with the segment control of W7-X for automated operation and control of the diagnostic. The evaluation of the results from the plasma operation is presented after accounting for appropriate sheath expansion for negative bias voltage on the probes.
RESUMO
Wendelstein 7-X, a superconducting optimized stellarator built in Greifswald/Germany, started its first plasmas with the last closed flux surface (LCFS) defined by 5 uncooled graphite limiters in December 2015. At the end of the 10 weeks long experimental campaign (OP1.1) more than 20 independent diagnostic systems were in operation, allowing detailed studies of many interesting plasma phenomena. For example, fast neutral gas manometers supported by video cameras (including one fast-frame camera with frame rates of tens of kHz) as well as visible cameras with different interference filters, with field of views covering all ten half-modules of the stellarator, discovered a MARFE-like radiation zone on the inboard side of machine module 4. This structure is presumably triggered by an inadvertent plasma-wall interaction in module 4 resulting in a high impurity influx that terminates some discharges by radiation cooling. The main plasma parameters achieved in OP1.1 exceeded predicted values in discharges of a length reaching 6 s. Although OP1.1 is characterized by short pulses, many of the diagnostics are already designed for quasi-steady state operation of 30 min discharges heated at 10 MW of ECRH. An overview of diagnostic performance for OP1.1 is given, including some highlights from the physics campaigns.
RESUMO
Cross sections for the electron-impact multiple ionization and fragmentation of negatively charged fullerene ions C(-)(n) ( n = 60, 70) to C(q+)(n-m) ( q = 1,2,3 and m = 0,2,4) have been measured for electron energies up to 1 keV. In the case of pure ionization all threshold energies are about 10 eV higher than the values expected. This shift, however, is not observed for the fragment ions. The experimental data indicate that there is no strong electron-electron interaction between the incident electron and the attached electron. A novel ionization mechanism is proposed which can be expected to be valid for all negatively charged molecular or cluster ions which are able to shield the attached electron from the incident electron.
RESUMO
The C2 fragmentation of fullerene ions C(q+)(60) (q = 1,2,3) induced by electron impact was studied for the first time. The cross sections for the loss of a C2 fragment indicate the presence of two different processes. At low electron energies the projectile electron leads to the direct excitation of the giant plasmon resonance. At electron energies larger than 100 eV the fragmentation of the fullerene ions can be described as an unsuccessful ionization. Only this second part of the cross section shows a dependence on the charge state q of the precursor ion.
RESUMO
An overview of the diagnostics which are essential for the first operational phase of Wendelstein 7-X and the set of diagnostics expected to be ready for operation at this time are presented. The ongoing investigations of how to cope with high levels of stray Electron Cyclotron Resonance Heating (ECRH) radiation in the ultraviolet (UV)/visible/infrared (IR) optical diagnostics are described.
RESUMO
The critical issues in the development of diagnostics, which need to work robust and reliable under quasi-steady state conditions for the discharge durations of 30 min and which cannot be maintained throughout the one week duration of each operation phase of the Wendelstein 7-X stellarator, are being discussed.
RESUMO
Experimental measurements and theoretical calculations are carried out for the electron-impact ionization of Sm(12+). The low energy region of the single ionization cross section for Sm(12+) is found to be dominated by contributions from the indirect process of excitation autoionization. At about 1.0 keV strong resonance features are found in the experimental crossed-beam measurements performed in scan mode at high resolution. Theoretical calculations confirm that the high energy experimental features are due to deep-core dielectronic capture followed by sequential double Auger decay. The discovery of these unusual high energy resonances in single and multiple ionization opens the door for future systematic studies of how heavy atomic ions with deep inner-shell vacancies achieve final stabilization.