RESUMO
The Arf (ADP-ribosylation factor) GAPs (GTPase-activating proteins) regulate membrane trafficking and actin cytoskeleton. The molecular mechanism of how Arf GAPs regulate actin cytoskeleton remains to be elucidated. We identified AGAP1, a subtype of Arf GAP, as a binding protein of FilGAP, a Rac-specific GAP, in mammalian cells. AGAP1 binds to C-terminus of FilGAP whereas FilGAP binds to N-terminus of AGAP1 containing GLD domain. FilGAP co-localized with AGAP1 at intracellular vesicles and targeting of FilGAP at the vesicles requires its interaction with AGAP1. Consistently, depletion of endogenous AGAP1 induced the accumulation of endogenous FilGAP into paxillin-positive focal adhesions and actin cytoskeletal structures. Knockdown of endogenous AGAP1 suppressed cell spreading on collagen and the suppression was released by depletion of endogenous FilGAP. Moreover, depletion of AGAP1 in MDA-MB-231 cells promoted cell invasion in extracellular matrices and depletion of FilGAP blocked the invasion. Taken together, the present study suggests that AGAP1 may regulate subcellular localization of FilGAP and control cell migration and invasion through interaction with FilGAP.
Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Neoplasias/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proteínas Ativadoras de GTPase/análise , Células HEK293 , Humanos , Invasividade Neoplásica/patologia , Neoplasias/patologiaRESUMO
Although inhibition of epidermal growth factor receptor (EGFR)-mediated cell signaling by the EGFR tyrosine kinase inhibitor gefitinib is highly effective against advanced non-small cell lung cancer, this drug might promote severe acute interstitial pneumonia. We previously reported that molecular hydrogen (H2) acts as a therapeutic and preventive anti-oxidant. Here, we show that treatment with H2 effectively protects the lungs of mice from severe damage caused by oral administration of gefitinib after intraperitoneal injection of naphthalene, the toxicity of which is related to oxidative stress. Drinking H2-rich water ad libitum mitigated naphthalene/gefitinib-induced weight loss and significantly improved survival, which was associated with a decrease in lung inflammation and inflammatory cytokines in the bronchoalveolar lavage fluid. Naphthalene decreased glutathione in the lung, increased malondialdehyde in the plasma, and increased 4-hydroxy-2-nonenal production in airway cells, all of which were mitigated by H2-rich water, indicating that the H2-rich water reverses cellular damage to the bronchial wall caused by oxidative stress. Finally, treatment with H2 did not interfere with the anti-tumor effects of gefitinib on a lung cancer cell line in vitro or on tumor-bearing mice in vivo. These results indicate that H2-rich water has the potential to improve quality of life during gefitinib therapy by mitigating lung injury without impairing anti-tumor activity.
Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Antineoplásicos/efeitos adversos , Gefitinibe/efeitos adversos , Hidrogênio/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Hidrogênio/farmacologia , Pulmão/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Naftalenos , Estresse Oxidativo/efeitos dos fármacos , Distribuição AleatóriaRESUMO
Dysregulation of transactive response DNA-binding protein-43 (TDP-43) is thought to be linked to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). TDP-43 normally localizes in the nucleus but its main localization shifts to the cytoplasm in most affected cells of ALS and FTLD patients. It is not yet known whether nuclear or cytoplasmic TDP-43 is responsible for TDP-43-induced neurotoxicity. In this study, we show that nuclear TDP-43 causes TDP-43 neurotoxicity. DNA/RNA-binding and dimerization of TDP-43 are both essential for TDP-43-induced cell death. Moreover, endogenous heterogeneous nuclear ribonucleoprotein-U (hnRNP-U) binds to TDP-43 and knocking-down of hnRNP-U induces neurotoxicity, whereas overexpression of hnRNP-U or hnRNP-A2 inhibits TDP-43-induced neurotoxicity. In addition, hnRNP-U inhibits TDP-43-mediated alterations in splicing of POLDIP3 mRNA. Altogether, these results suggest that nuclear TDP-43 becomes neurotoxic by escaping from the inhibitory regulation by hnRNPs.
Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Neurônios/metabolismo , Animais , Chlorocebus aethiops , Proteínas de Ligação a DNA/toxicidade , Humanos , Camundongos , Neurônios/efeitos dos fármacos , Proteínas Nucleares/genética , Transporte Proteico , Splicing de RNA , Proteínas de Ligação a RNA/genéticaRESUMO
The serine/threonine kinase mTOR forms two distinct complexes, mTORC1 and mTORC2, and controls a number of biological processes, including proliferation, survival and autophagy. Although the function of mTORC1 has been extensively studied, the mTORC2 signaling pathway largely remains to be elucidated. Here, we have shown that mTORC2 phosphorylates filamin A, an actin cross-linking protein, at serine 2152 (S2152) both in vivo and in living cells. Treatment of HeLa cells with Torin1 (an mTORC1/mTORC2 inhibitor), but not rapamycin (an mTORC1 inhibitor), suppressed the phosphorylation of filamin A, which decreased the binding of filamin A with ß7-integrin cytoplasmic tail. Torin1 also inhibited focal adhesion formation and cell migration in A7 filamin A-replete melanoma cells but not in M2 filamin A-deficient cells, suggesting a pivotal role for mTORC2 in filamin A function. Finally, reduced focal adhesion formation in M2 cells was significantly rescued by expressing wild type but not S2152A nonphosphorylatable mutant of filamin A. Taken together, our results indicate that mTORC2 regulates filamin A-dependent focal adhesions and cell migration.
Assuntos
Membrana Celular/metabolismo , Movimento Celular , Filaminas/metabolismo , Adesões Focais , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Fosforilação , Proteína Companheira de mTOR Insensível à RapamicinaRESUMO
Rheb small GTPases, which consist of Rheb1 and Rheb2 (also known as RhebL1) in mammalian cells, are unique members of the Ras superfamily and play central roles in regulating protein synthesis and cell growth by activating mTOR. To gain further insight into the function of Rheb, we carried out a search for Rheb-binding proteins and found that Rheb binds to CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase), a multifunctional enzyme required for the de novo synthesis of pyrimidine nucleotides. CAD binding is more pronounced with Rheb2 than with Rheb1. Rheb binds CAD in a GTP- and effector domain-dependent manner. The region of CAD where Rheb binds is located at the C-terminal region of the carbamoyl-phosphate synthetase domain and not in the dihydroorotase and aspartate transcarbamoylase domains. Rheb stimulated carbamoyl-phosphate synthetase activity of CAD in vitro. In addition, an elevated level of intracellular UTP pyrimidine nucleotide was observed in Tsc2-deficient cells, which was attenuated by knocking down of Rheb. Immunostaining analysis showed that expression of Rheb leads to increased accumulation of CAD on lysosomes. Both a farnesyltransferase inhibitor that blocks membrane association of Rheb and knockdown of Rheb mislocalized CAD. These results establish CAD as a downstream effector of Rheb and suggest a possible role of Rheb in regulating de novo pyrimidine nucleotide synthesis.
Assuntos
Aspartato Carbamoiltransferase/metabolismo , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Di-Hidro-Orotase/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Neuropeptídeos/metabolismo , Nucleosídeos de Pirimidina/biossíntese , Proteínas ras/metabolismo , Animais , Proliferação de Células/genética , Humanos , Lisossomos/metabolismo , Lisossomos/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Proteínas Monoméricas de Ligação ao GTP/genética , Complexos Multiproteicos/metabolismo , Neuropeptídeos/genética , Ligação Proteica , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Serina-Treonina Quinases TOR/metabolismo , Proteínas ras/genéticaRESUMO
The activation of T cells is known to be accompanied by the temporary downmodulation of the TCR/CD3 complex on the cell surface. Here, we established a novel monoclonal antibody, Dow2, that temporarily induces downmodulation of the TCR/CD3 complex in mouse CD4(+) T cells without activating T cells. Dow2 recognized the determinant on CD3ε; however, differences were observed in the binding mode between Dow2 and the agonistic anti-CD3ε Ab, 145-2C11. An injection of Dow2 in vivo resulted in T-cell anergy, and prolonged the survival of cardiac allografts without a marked increase in cytokine release. The phosphorylated forms of the signaling proteins PLC-γ1 and LAT in Dow2-induced anergic T cells were markedly decreased upon stimulation. However, the levels of phosphorylated LAT and PLCγ1 in Dow2-induced anergic T cells could be rescued in the presence of the proteasome inhibitor MG-132. These results suggest that proteasome-mediated degradation is involved in hypophosphorylated LAT and PLCγ1 in Dow2-induced anergic T cells. The novel CD3-specific Ab, Dow2, may provide us with a unique tool for inducing immunosuppression.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Anticorpos Monoclonais Murinos/farmacologia , Complexo CD3/imunologia , Anergia Clonal/efeitos dos fármacos , Proteínas de Membrana/imunologia , Fosfolipase C gama/imunologia , Fosfoproteínas/imunologia , Linfócitos T/imunologia , Animais , Anticorpos Monoclonais Murinos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação/efeitos dos fármacos , Fosforilação/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Proteólise/efeitos dos fármacosRESUMO
Mesangial cell migration, regulated by several growth factors, is crucial after glomerulopathy and during glomerular development. Directional migration requires the establishment of a polarized cytoskeletal arrangement, a process regulated by coordinated actin dynamics and focal adhesion turnover at the peripheral ruffles in migrating cells. Here we found high expression of the actin cross-linking protein EPLIN (epithelial protein lost in neoplasm) in mesangial cells. EPLIN was localized in mesangial angles, which consist of actin-containing microfilaments extending underneath the capillary endothelium, where they attach to the glomerular basement membrane. In cultured mesangial cells, EPLIN was localized in peripheral actin bundles at focal adhesions and formed a protein complex with paxillin. The MEK-ERK (extracellular signal-regulated kinase) cascade regulated EPLIN-paxillin interaction and induced translocalization of EPLIN from focal adhesion sites to peripheral ruffles. Knockdown of EPLIN in mesangial cells enhanced platelet-derived growth factor-induced focal adhesion disassembly and cell migration. Furthermore, EPLIN expression was decreased in mesangial proliferative nephritis in rodents and humans in vivo. These results shed light on the coordinated actin remodeling in mesangial cells during restorative remodeling. Thus, changes in expression and localization of cytoskeletal regulators underlie phenotypic changes in mesangial cells in glomerulonephritis.
Assuntos
Adesão Celular , Movimento Celular , Proteínas do Citoesqueleto/metabolismo , Glomerulonefrite Membranoproliferativa/metabolismo , Células Mesangiais/fisiologia , Proteínas dos Microfilamentos/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Actinas/metabolismo , Adolescente , Animais , Células Cultivadas , Criança , Proteínas do Citoesqueleto/genética , Expressão Gênica , Glomerulonefrite por IGA/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Proteínas dos Microfilamentos/genética , Paxilina/metabolismo , RNA Mensageiro/metabolismo , Ratos , Antígenos Thy-1/metabolismoRESUMO
Aralin from Aralia elata is a newly identified type II ribosome- inactivating protein, which preferentially induces apoptosis in cancer cells. In this study, we identified that the aralin receptor is a 110-kDa high-density lipoprotein-binding protein (HDLBP), which functions as a HDL receptor. The sensitivities of tumor cell lines to aralin were dependent on the expression levels of the 110-kDa HDLBP and its forced expression in aralin-resistant Huh7 cells conferred aralin sensitivity. HDLBP-knockdown HeLa cells showed a significant aralin resistance in vitro and in vivo. Conversely, ectopic expression of the 150-kDa HDLBP resulted in increased aralin sensitivity in vivo, accompanying enhanced expression of the 110-kDa HDLBP. Thus, these results showed that the 110-kDa HDLBP in lipid rafts acted as an aralin receptor and that its expression levels determined aralin sensitivity, suggesting that aralin could be a promising anticancer drug for HDLBP-overexpressing tumors.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proteínas de Ligação a RNA/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 2/farmacologia , Administração Oral , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Aralia/química , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Células HeLa , Células Hep G2 , Humanos , Lipoproteínas HDL/antagonistas & inibidores , Lipoproteínas HDL/genética , Lipoproteínas HDL/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos Nus , Peso Molecular , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Receptores de Lipoproteínas/antagonistas & inibidores , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 2/química , Proteínas Inativadoras de Ribossomos Tipo 2/farmacocinética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Protein phosphorylation is a major mechanism that regulates many basic cellular processes. Identification and characterization of substrates for a given protein kinase can lead to a better understanding of signal transduction pathways. However, it is still difficult to efficiently identify substrates for protein kinases. Here, we propose an integrated proteomic approach consisting of in vitro dephosphorylation and phosphorylation, phosphoprotein enrichment, and 2D-DIGE. Phosphatase treatment significantly reduced the complexity of the phosphoproteome, which enabled us to efficiently identify the substrates. We employed p38 mitogen-activated protein kinase (p38 MAP kinase) as a model kinase and identified 23 novel candidate substrates for this kinase. Seven selected candidates were phosphorylated by p38 MAP kinase in vitro and in p38 MAP kinase-activated cells. This proteomic approach can be applied to any protein kinase, allowing global identification of novel substrates.
Assuntos
Fosfoproteínas/análise , Proteoma/análise , Proteômica/métodos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Cromatografia de Afinidade , Ensaios Enzimáticos , Células HEK293 , Células HeLa , Humanos , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilação , Proteoma/química , Proteoma/metabolismo , Eletroforese em Gel Diferencial BidimensionalRESUMO
Thiopurine is metabolized to 6-thio-(deoxy) guanosine triphosphate (6-thio-(d) GTP), which is then incorporated into DNA or RNA and causes cytotoxicity. Nudix hydrolase 15 (NUDT15) reduces the cytotoxic effects of thiopurine by converting 6-thio-(d) GTP to 6-thio-(d) guanosine monophosphate (6-thio-(d) GMP). NUDT15 polymorphisms like the Arg139Cys variant are strongly linked to thiopurine-induced severe leukocytopenia and alopecia. Therefore, measurement of NUDT15 enzymatic activity in individual patients can help predict thiopurine tolerability and adjust the dosage. We aimed to develop a quantitative assay for NUDT15 enzymatic activity in human blood samples. Blood samples were collected from donors whose NUDT15 genetic status was determined. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to assess the 6-thio-GTP metabolic activity in cell extracts. Because 6-thio-guanosine diphosphate (6-thio-GDP) and 6-thio-GMP were generated upon incubation of 6-thio-GTP with human blood cell extracts, the method detecting 6-thio-GTP, 6-thio-GDP, and 6-thio-GMP was validated. All three metabolites were linearly detected, and the lower limit of quantification (LLOQ) of 6-thio-GTP, 6-thio-GDP, and 6-thio-GMP were 5 µM, 1 µM, and 2 µM, respectively. Matrix effects of human blood cell extracts to detect 6-thio-GTP, 6-thio-GDP, and 6-thio-GMP were 99.0 %, 100.5 %, and 101.4 %, respectively, relative to the signals in the absence of blood cell extracts. The accuracy and precision of the method and the stability of the samples were also assessed. Using this established method, the genotype-dependent differences in NUDT15 activities were successfully determined using cell extracts derived from human blood cells with NUDT15 wild-type (WT) or Arg139Cys variant and 6-thio-GTP (100 µM) as a substrate (18.1, 14.9, and 6.43 µM/h/106 cells for WT, Arg139Cys heterozygous, and homozygous variant, respectively). We developed a method for quantifying intracellular NUDT15 activity in peripheral blood mononuclear cells (PBMCs), which we defined as the conversion of 6-thio-GTP to 6-thio-GMP. Although PBMCs preparation takes some time, its reproducibility in experiments makes it a promising candidate for clinical application. This method can tell the difference between WT and Arg139Cys homozygous blood samples. Even in patients with WT NUDT15, WT samples showed variations in NUDT15 activity, which may correlate with variations in thiopurine dosage.
Assuntos
Leucócitos Mononucleares , Nudix Hidrolases , Purinas , Compostos de Sulfidrila , Humanos , Cromatografia Líquida , Extratos Celulares , Leucócitos Mononucleares/metabolismo , Reprodutibilidade dos Testes , Pirofosfatases/genética , Pirofosfatases/química , Pirofosfatases/metabolismo , Espectrometria de Massas em Tandem , Guanosina Trifosfato , MercaptopurinaRESUMO
Overexpression of the ErbB2/HER2 receptor tyrosine kinase contributes to tumorigenesis. However, mechanisms regulating ErbB2 protein levels remain largely unclear. Here, we identified novel mechanisms of ErbB2 downregulation. ErbB2 constitutively binds to an adaptor protein FRS2ß. We found that FRS2ß bound to CD2AP and CIN85, which induces endosomal trafficking that targets lysosomes. FRS2ß colocalized with CIN85 in the cytoplasm. Expression of wild type FRS2ß but not its CIN85 non-binding mutant, downregulated the ErbB2 protein and inhibited anchorage-independent cell growth. Moreover, the E3 ubiquitin-protein ligase Cbl was contained within a complex of FRS2ß and CIN85. Knockdown of both CIN85 and CD2AP or of Cbl, or treatment with lysosomal degradation inhibitors diminished FRS2ß downregulation of ErbB2. In addition, knockdown of endogenous FRS2ß caused upregulation of ErbB2 in primary neural cells. Finally, immunohistochemical analysis showed that human breast cancer tissues that overexpress ErbB2 expressed low levels of FRS2ß. Thus, an FRS2ß-CIN85/CD2AP-Cbl axis for downregulation of ErbB2 may regulate ErbB2 protein levels in physiological and pathological settings. Molecular targeting drugs that can increase or stabilize the ErbB2-FRS2ß-CIN85/CD2AP-Cbl axis may have promise for the control of ErbB2-overexpressing tumors.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fosfoproteínas/metabolismo , Receptor ErbB-2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos , Neoplasias da Mama/metabolismo , Células Cultivadas , Regulação para Baixo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Neurônios/metabolismo , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Transdução de SinaisRESUMO
Our objective was to identify new serum autoantibodies associated with systemic lupus erythematosus (SLE), focusing on those found in patients with central nervous system (CNS) syndromes. Autoantigens in human brain proteins were screened by multiple proteomic analyses: two-dimensional polyacrylamide gel electrophoresis/Western blots followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis and immunoprecipitation followed by liquid chromatography-tandem mass spectrometry shotgun analysis. The presence of serum IgG autoantibodies against 11 selected recombinant antigens was assessed by Western blot and enzyme-linked immunosorbent assay (ELISA) in the sera of 106 SLE patients and 100 normal healthy controls. The O.D. values in sera from SLE patients were significantly higher than those of controls for the antigens crystallin αB (p = 0.0002), esterase D (p = 0.0002), APEX nuclease 1 (p < 0.0001), ribosomal protein P0 (p < 0.0001), and PA28γ (p = 0.0005); the first three are newly reported. The anti-esterase D antibody levels were significantly higher in the CNS group than in the non-CNS group (p = 0.016). Moreover, when the SLE patients were categorized using CNS manifestations indicating neurologic or psychiatric disorders, the anti-APEX nuclease 1 antibody levels were significantly elevated in SLE patients with psychiatric disorders (p = 0.037). In conclusion, the association of SLE with several new and previously reported autoantibodies has been demonstrated. Statistically significant associations between anti-esterase D antibodies and CNS syndromes as well as between anti-APEX nuclease 1 antibodies and psychiatric disorders in SLE were also demonstrated. The combined immunoproteomic approaches used in this study are reliable and effective methods for identifying SLE autoantigens.
Assuntos
Autoanticorpos/sangue , Lúpus Eritematoso Sistêmico/sangue , Adolescente , Adulto , Idoso , Western Blotting , Química Encefálica , Carboxilesterase/imunologia , Linhagem Celular , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/imunologia , Eletroforese em Gel Bidimensional , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoprecipitação , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Pessoa de Meia-Idade , Proteômica , Espectrometria de Massas em Tandem , Adulto Jovem , Cadeia B de alfa-Cristalina/imunologiaRESUMO
OBJECTIVES: We assessed the association between serum autoantibodies against the 70-kDa polypeptide of the U1-ribonucleoprotein (RNP) complex (U1-70k) and the central nervous system (CNS) syndromes in systemic lupus erythematosus (SLE) patients. METHODS: We studied 106 hospitalized patients with active SLE, comparing those with (n = 32) and without (n = 74) CNS syndromes. CNS syndromes were further classified into neurologic (n = 21) and psychiatric (n = 15) disorders. Immunoglobulin G (IgG) anti-U1-70k antibodies were measured by enzyme-linked immunosorbent assay (ELISA) using recombinant antigens. IgG antibodies against whole U1-RNP were measured using commercial ELISA kits. RESULTS: Although there was no significant difference in the levels of serum anti-U1-70k antibodies in SLE patients with or without CNS syndromes (p = 0.83), the levels were significantly elevated in SLE patients compared with patients without psychiatric syndromes (p = 0.030). In contrast, no significant difference was observed in the levels of serum anti-U1-RNP antibodies in SLE patients with or without psychiatric syndromes (p = 0.555). CONCLUSIONS: These results indicate that serum anti-U1-70k antibodies are associated with psychiatric syndromes in SLE but that they are not associated with CNS syndromes as a whole or with neurologic syndromes. The anti-U1-70k antibodies might be involved in the pathological mechanisms of psychiatric syndromes in SLE.
Assuntos
Anticorpos Antinucleares/sangue , Vasculite Associada ao Lúpus do Sistema Nervoso Central/sangue , Transtornos Psicóticos/sangue , Ribonucleoproteína Nuclear Pequena U1/imunologia , Adolescente , Adulto , Idoso , Feminino , Humanos , Vasculite Associada ao Lúpus do Sistema Nervoso Central/complicações , Masculino , Pessoa de Meia-Idade , Peso Molecular , Peptídeos/imunologia , Transtornos Psicóticos/etiologia , Proteínas Recombinantes , Estudos Retrospectivos , Síndrome , Adulto JovemRESUMO
The cell-cell contact between HIV-1-infected and uninfected cells forms a virological synapse (VS) to allow for efficient HIV-1 transmission. Not only are HIV-1 components polarized and accumulate at cell-cell interfaces, but viral receptors and lipid raft markers are also. To better understand the nature of the HIV-1 VS, detergent-resistant membrane (DRM) fractions were isolated from an infected-uninfected cell coculture and compared to those from non-coculture samples using 2D fluorescence difference gel electrophoresis. Mass spectrometry revealed that ATP-related enzymes (ATP synthase subunit and vacuolar-type proton ATPase), protein translation factors (eukaryotic initiation factor 4A and mitochondrial elongation factor Tu), protein quality-control-related factors (protein disulfide isomerase A3 and 26S protease regulatory subunit), charged multivesicular body protein 4B, and vimentin were recruited to the VS. Membrane flotation centrifugation of the DRM fractions and confocal microscopy confirmed these findings. We further explored how vimentin contributes to the HIV-1 VS and found that vimentin supports HIV-1 transmission through the recruitment of CD4 to the cell-cell interface. Since many of the molecules identified in this study have previously been suggested to be involved in HIV-1 infection, we suggest that a 2D difference gel analysis of DRM-associated proteins may reveal the molecules that play crucial roles in HIV-1 cell-cell transmission.
Assuntos
Detergentes , Infecções por HIV , Humanos , Detergentes/farmacologia , Vimentina/metabolismo , Proteômica/métodos , Infecções por HIV/metabolismo , Trifosfato de Adenosina/metabolismo , Microdomínios da Membrana/metabolismoRESUMO
Ectodomain shedding is a posttranslational modification mechanism, which liberates extracellular domains of membrane proteins through juxtamembrane processing executed mainly by the ADAM (a disintegrin and metalloprotease) family of metalloproteases. Shedding is a unique and effective mechanism for inducing multifaceted effects through the soluble extracellular domains released and/or the remaining membrane-bound portions; however, the physiological functions of shedding are not yet fully understood. In this study, we performed unbiased proteomic screening for shedding targets in a lipopolysaccharide (LPS)-stimulated macrophage cell line to elucidate a new immunological function of shedding. We identified VIP36 (36-kDa vesicular integral membrane protein), a lectin domain-containing transmembrane protein postulated as a cargo receptor for Golgi-to-endoplasmic reticulum transport, as a new target for shedding and found that the shedding of VIP36 occurs mainly on the cell surface. In addition, we demonstrate that the amount of VIP36 precisely regulates phagocytosis in macrophages and that the shedding of VIP36 is required for this regulation. These results substantially expand our knowledge of the immunological and cell biological functions of both the shedding process and VIP36 itself.
Assuntos
Macrófagos/metabolismo , Lectinas de Ligação a Manose/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fagocitose/fisiologia , Animais , Western Blotting , Linhagem Celular , Humanos , Macrófagos/citologia , Lectinas de Ligação a Manose/genética , Proteínas de Membrana Transportadoras/genética , Camundongos , Fagocitose/genética , Processamento de Proteína Pós-Traducional , Proteômica/métodosRESUMO
Signal transduction systems are known to widely regulate complex biological events such as cell proliferation and differentiation. Because phosphotyrosine-dependent networks play a key role in transmitting signals, a comprehensive and fine description of their dynamic behavior can lead us to systematically analyze the regulatory mechanisms that result in each biological effect. Here we established a mass spectrometry-based framework for analyzing tyrosine phosphoproteome dynamics through temporal network perturbation. A highly time-resolved description of the epidermal growth factor-dependent signaling pathways in human A431 cells revealed a global view of their multiphase network activation, comprising a spike signal transmission within 1 min of ligand stimulation followed by the prolonged activation of multiple Src-related molecules. Temporal perturbation of Src family kinases with the corresponding inhibitor PP2 in the prolonged activation phase led to the down-regulation of the molecules related to cell adhesion and receptor degradation, whereas the canonical cascades as well as the epidermal growth factor receptor relatively maintained their activities. Our methodology provides a system-wide view of the regulatory network clusters involved in signal transduction that is essential to refine the literature-based network structures for a systems biology analysis.
Assuntos
Redes Reguladoras de Genes , Fosfotirosina/metabolismo , Proteoma/metabolismo , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/farmacologia , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Fosforilação/efeitos dos fármacos , Pirimidinas/farmacologia , Fatores de Tempo , Quinases da Família src/antagonistas & inibidoresRESUMO
Malignant mesothelioma (MM) is an aggressive tumor that typically develops after a long latency following asbestos exposure. Although mechanistic target of rapamycin complex 1 (mTORC1) activation enhances MM cell growth, the mTORC1 inhibitor everolimus has shown limited efficacy in clinical trials of MM patients. We explored the mechanism underlying mTORC1 activation in MM cells and its effects on cell proliferation and progression. Analysis of the expression profiles of 87 MMs from The Cancer Genome Atlas revealed that 40 samples (46%) displayed altered expression of RPTOR (mTORC1 component) and genes immediately upstream that activate mTORC1. Among them, we focused on RHEB and RHEBL1, which encode direct activators of mTORC1. Exogenous RHEBL1 expression enhanced MM cell growth, indicating that RHEB-mTORC1 signaling acts as a pro-oncogenic cascade. We investigated molecules that directly activate RHEBs, identifying SmgGDS as a novel RHEB-binding protein. SmgGDS knockdown reduced mTORC1 activation and inhibited the proliferation of MM cells with mTORC1 activation. Interestingly, SmgGDS displayed high binding affinity with inactive GDP-bound RHEBL1, and its knockdown reduced cytosolic RHEBL1 without affecting its activation. These findings suggest that SmgGDS retains GDP-bound RHEBs in the cytosol, whereas GTP-bound RHEBs are localized on intracellular membranes to promote mTORC1 activation. We revealed a novel role for SmgGDS in the RHEB-mTORC1 pathway and its potential as a therapeutic target in MM with aberrant mTORC1 activation. IMPLICATIONS: Our data showing that SmgGDS regulates RHEB localization to activate mTORC1 indicate that SmgGDS can be used as a new therapeutic target for MM exhibiting mTORC1 activation.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mesotelioma Maligno/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Animais , Proliferação de Células/fisiologia , Feminino , Células HEK293 , Células HeLa , Humanos , Mesotelioma Maligno/patologia , Camundongos , Camundongos NusRESUMO
The renal glomerulus consists of endothelial cells, podocytes, and mesangial cells. These cells cooperate with each other for glomerular filtration; however, the intercellular signaling molecules between glomerular cells are not fully determined. Tyrosine phosphorylation of slit diaphragm molecules is a key to the detection of the signal to podocytes from other cells. Although src kinase is involved in this event, the molecules working for dephosphorylation remain unclear. We demonstrate that signal-inhibitory regulatory protein (SIRP)-alpha, which recruits a broadly distributed tyrosine dephosphorylase SHP-2 to the plasma membrane, is located in podocytes. SIRP-alpha is a type I transmembrane glycoprotein, which has three immunoglobulin-like domains in the extracellular region and two SH2 binding motifs in the cytoplasm. This molecule functions as a scaffold for many proteins, especially the SHP-2 molecule. SIRP-alpha is concentrated in the slit diaphragm region of normal podocytes. CD47, a ligand for SIRP-alpha, is also expressed in the glomerulus. CD47 is located along the plasma membrane of mesangial cells, but not on podocytes. CD47 is markedly decreased during mesangiolysis, but increased in mesangial cells in the restoration stage. SIRP-alpha is heavily tyrosine phosphorylated under normal conditions; however, tyrosine phosphorylation of SIRP-alpha was markedly decreased during mesangiolysis induced by Thy1.1 monoclonal antibody injection. It is known that the cytoplasmic domain of SIPR-alpha is dephosphorylated when CD47 binds to the extracellular domain of SIRP-alpha. The data suggest that the CD47-SIRP-alpha interaction may be functionally important in cell-cell communication in the diseased glomerulus.
Assuntos
Antígenos de Diferenciação/fisiologia , Antígeno CD47/fisiologia , Comunicação Celular/fisiologia , Glomérulos Renais/fisiologia , Transdução de Sinais/fisiologia , Animais , Endotélio/citologia , Endotélio/fisiologia , Mesângio Glomerular/citologia , Mesângio Glomerular/fisiologia , Glomérulos Renais/citologia , Masculino , Modelos Animais , Podócitos/citologia , Podócitos/fisiologia , Ratos , Ratos Wistar , Receptores Imunológicos/fisiologiaRESUMO
Leucine-rich repeat kinase 2 (LRRK2) has been identified as the causal gene for autosomal dominant familial Parkinson's disease (PD), although the mechanism of neurodegeneration involving the mutant LRRK2 molecules remains unknown. In the present study, we found that the protein level of transfected I(2020)T mutant LRRK2 was significantly lower than that of wild-type and G(2019)S mutant LRRK2, although the intracellular localization of the I(2020)T and wild-type molecules did not differ. Pulse-chase experiments proved that the I(2020)T LRRK2 molecule has a higher degradation rate than wild-type or G(2019)S LRRK2. Upon addition of proteasome and lysosome inhibitors, the protein level of I(2020)T mutant LRRK2 reached that of the wild-type. These results indicate that I(2020)T mutant LRRK2 is more susceptible to post-translational degradation than the wild-type molecule. Our results indicate a novel molecular feature characteristic to I(2020)T LRRK2, and provide a new insight into the mechanism of neurodegeneration caused by LRRK2.
Assuntos
Doença de Parkinson/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Substituição de Aminoácidos , Linhagem Celular , Humanos , Isoleucina/genética , Isoleucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson/genética , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica , Treonina/genética , Treonina/metabolismo , TransfecçãoRESUMO
A GGGGCC hexanucleotide repeat expansion in the C9ORF72 gene has been identified as the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. The repeat expansion undergoes unconventional translation to produce five dipeptide repeat proteins (DPRs). Although DPRs are thought to be neurotoxic, the molecular mechanism underlying the DPR-caused neurotoxicity has not been fully elucidated. The current study shows that poly-proline-arginine (poly-PR), the most toxic DPR in vitro, binds to and up-regulates nuclear paraspeckle assembly transcript 1 (NEAT1) that plays an essential role as a scaffold non-coding RNA during the paraspeckle formation. The CRISPR-assisted up-regulation of endogenous NEAT1 causes neurotoxicity. We also show that the poly-PR modulates the function of several paraspeckle-localizing heterogeneous nuclear ribonucleoproteins. Furthermore, dysregulated expression of TAR DNA-binding protein 43 (TDP-43) up-regulates NEAT1 expression and induces neurotoxicity. These results suggest that the increase in the paraspeckle formation may be involved in the poly-PR- and TDP-43-mediated neurotoxicity.